Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 14: 1277262, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37877089

RESUMEN

Rhizobia are soil bacteria that can establish a nitrogen-fixing symbiosis with legume plants. As horizontally transmitted symbionts, the life cycle of rhizobia includes a free-living phase in the soil and a plant-associated symbiotic phase. Throughout this life cycle, rhizobia are exposed to a myriad of other microorganisms that interact with them, modulating their fitness and symbiotic performance. In this review, we describe the diversity of interactions between rhizobia and other microorganisms that can occur in the rhizosphere, during the initiation of nodulation, and within nodules. Some of these rhizobia-microbe interactions are indirect, and occur when the presence of some microbes modifies plant physiology in a way that feeds back on rhizobial fitness. We further describe how these interactions can impose significant selective pressures on rhizobia and modify their evolutionary trajectories. More extensive investigations on the eco-evolutionary dynamics of rhizobia in complex biotic environments will likely reveal fascinating new aspects of this well-studied symbiotic interaction and provide critical knowledge for future agronomical applications.

2.
Nat Plants ; 9(7): 1067-1080, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37322127

RESUMEN

Symbiotic interactions such as the nitrogen-fixing root nodule symbiosis (RNS) have structured ecosystems during the evolution of life. Here we aimed at reconstructing ancestral and intermediate steps that shaped RNS observed in extant flowering plants. We compared the symbiotic transcriptomic responses of nine host plants, including the mimosoid legume Mimosa pudica for which we assembled a chromosome-level genome. We reconstructed the ancestral RNS transcriptome composed of most known symbiotic genes together with hundreds of novel candidates. Cross-referencing with transcriptomic data in response to experimentally evolved bacterial strains with gradual symbiotic proficiencies, we found the response to bacterial signals, nodule infection, nodule organogenesis and nitrogen fixation to be ancestral. By contrast, the release of symbiosomes was associated with recently evolved genes encoding small proteins in each lineage. We demonstrate that the symbiotic response was mostly in place in the most recent common ancestor of the RNS-forming species more than 90 million years ago.


Asunto(s)
Fabaceae , Simbiosis , Simbiosis/fisiología , Ecosistema , Fijación del Nitrógeno/genética , Bacterias
3.
Mol Biol Evol ; 40(5)2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37186547

RESUMEN

During the emergence of new host-microbe symbioses, microbial fitness results from the ability to complete the different steps of symbiotic life cycles, where each step imposes specific selective pressures. However, the relative contribution of these different selective pressures to the adaptive trajectories of microbial symbionts is still poorly known. Here, we characterized the dynamics of phenotypic adaptation to a simplified symbiotic life cycle during the experimental evolution of a plant pathogenic bacterium into a legume symbiont. We observed that fast adaptation was predominantly explained by improved competitiveness for host entry, which outweighed adaptation to within-host proliferation. Whole-population sequencing of bacteria at regular time intervals along this evolution experiment revealed the continuous accumulation of new mutations (fuelled by a transient hypermutagenesis phase occurring at each cycle before host entry, a phenomenon described in previous work) and sequential sweeps of cohorts of mutations with similar temporal trajectories. The identification of adaptive mutations within the fixed mutational cohorts showed that several adaptive mutations can co-occur in the same cohort. Moreover, all adaptive mutations improved competitiveness for host entry, while only a subset of those also improved within-host proliferation. Computer simulations predict that this effect emerges from the presence of a strong selective bottleneck at host entry occurring before within-host proliferation and just after the hypermutagenesis phase in the rhizosphere. Together, these results show how selective bottlenecks can alter the relative influence of selective pressures acting during bacterial adaptation to multistep infection processes.


Asunto(s)
Fabaceae , Fabaceae/genética , Bacterias/genética , Adaptación Fisiológica , Mutación , Aclimatación , Simbiosis/genética
4.
Genes (Basel) ; 11(3)2020 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-32210028

RESUMEN

Rhizobia, the nitrogen-fixing symbionts of legumes, are polyphyletic bacteria distributed in many alpha- and beta-proteobacterial genera. They likely emerged and diversified through independent horizontal transfers of key symbiotic genes. To replay the evolution of a new rhizobium genus under laboratory conditions, the symbiotic plasmid of Cupriavidus taiwanensis was introduced in the plant pathogen Ralstonia solanacearum, and the generated proto-rhizobium was submitted to repeated inoculations to the C. taiwanensis host, Mimosa pudica L.. This experiment validated a two-step evolutionary scenario of key symbiotic gene acquisition followed by genome remodeling under plant selection. Nodulation and nodule cell infection were obtained and optimized mainly via the rewiring of regulatory circuits of the recipient bacterium. Symbiotic adaptation was shown to be accelerated by the activity of a mutagenesis cassette conserved in most rhizobia. Investigating mutated genes led us to identify new components of R. solanacearum virulence and C. taiwanensis symbiosis. Nitrogen fixation was not acquired in our short experiment. However, we showed that post-infection sanctions allowed the increase in frequency of nitrogen-fixing variants among a non-fixing population in the M. pudica-C. taiwanensis system and likely allowed the spread of this trait in natura. Experimental evolution thus provided new insights into rhizobium biology and evolution.


Asunto(s)
Evolución Molecular , Fabaceae/microbiología , Rhizobium/genética , Simbiosis , Fabaceae/genética , Rhizobium/patogenicidad , Selección Genética
5.
mBio ; 11(1)2020 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-31992622

RESUMEN

Over millions of years, changes have occurred in regulatory circuitries in response to genome reorganization and/or persistent changes in environmental conditions. How bacteria optimize regulatory circuitries is crucial to understand bacterial adaptation. Here, we analyzed the experimental evolution of the plant pathogen Ralstonia solanacearum into legume symbionts after the transfer of a natural plasmid encoding the essential mutualistic genes. We showed that the Phc quorum sensing system required for the virulence of the ancestral bacterium was reconfigured to improve intracellular infection of root nodules induced by evolved Ralstonia A single mutation in either the PhcB autoinducer synthase or the PhcQ regulator of the sensory cascade tuned the kinetics of activation of the central regulator PhcA in response to cell density so that the minimal stimulatory concentration of autoinducers needed for a given response was increased. Yet, a change in the expression of a PhcA target gene was observed in infection threads progressing in root hairs, suggesting early programming for the late accommodation of bacteria in nodule cells. Moreover, this delayed switch to the quorum sensing mode decreased the pathogenicity of the ancestral strain, illustrating the functional plasticity of regulatory systems and showing how a small modulation in signal response can produce drastic changes in bacterial lifestyle.IMPORTANCE Rhizobia are soil bacteria from unrelated genera able to form a mutualistic relationship with legumes. Bacteria induce the formation of root nodules, invade nodule cells, and fix nitrogen to the benefit of the plant. Rhizobial lineages emerged from the horizontal transfer of essential symbiotic genes followed by genome remodeling to activate and/or optimize the acquired symbiotic potential. This evolutionary scenario was replayed in a laboratory evolution experiment in which the plant pathogen Ralstonia solanacearum successively evolved the capacities to nodulate Mimosa pudica and poorly invade, then massively invade, nodule cells. In some lines, the improvement of intracellular infection was achieved by mutations modulating a quorum sensing regulatory system of the ancestral strain. This modulation that affects the activity of a central regulator during the earliest stages of symbiosis has a huge impact on late stages of symbiosis. This work showed that regulatory rewiring is the main driver of this pathogeny-symbiosis transition.


Asunto(s)
Adaptación Biológica , Fabaceae/microbiología , Interacciones Huésped-Patógeno , Percepción de Quorum , Nódulos de las Raíces de las Plantas/microbiología , Simbiosis , Adaptación Biológica/genética , Bacterias , Evolución Biológica , Fabaceae/genética , Interacciones Huésped-Patógeno/genética , Mutación , Rhizobium , Nódulos de las Raíces de las Plantas/genética
6.
Mol Plant Microbe Interact ; 32(12): 1635-1648, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31617792

RESUMEN

The ß-rhizobium Cupriavidus taiwanensis is a nitrogen-fixing symbiont of Mimosa pudica. Nod factors produced by this species were previously found to be pentameric chitin-oligomers carrying common C18:1 or C16:0 fatty acyl chains, N-methylated and C-6 carbamoylated on the nonreducing terminal N-acetylglucosamine and sulfated on the reducing terminal residue. Here, we report that, in addition, C. taiwanensis LMG19424 produces molecules where the reducing sugar is open and oxidized. We identified a novel nodulation gene located on the symbiotic plasmid pRalta, called noeM, which is involved in this atypical Nod factor structure. noeM encodes a transmembrane protein bearing a fatty acid hydroxylase domain. This gene is expressed during symbiosis with M. pudica and requires NodD and luteolin for optimal expression. The closest noeM homologs formed a separate phylogenetic clade containing rhizobial genes only, which are located on symbiosis plasmids downstream from a nod box. Corresponding proteins, referred to as NoeM, may have specialized in symbiosis via the connection to the nodulation pathway and the spread in rhizobia. noeM was mostly found in isolates of the Mimoseae tribe, and specifically detected in all tested strains able to nodulate M. pudica. A noeM deletion mutant of C. taiwanensis was affected for the nodulation of M. pudica, confirming the role of noeM in the symbiosis with this legume.


Asunto(s)
Cupriavidus , Mimosa , Rhizobium , Cupriavidus/clasificación , Cupriavidus/genética , Genes Bacterianos/genética , Mimosa/microbiología , Filogenia , Plásmidos/genética , Simbiosis/genética
7.
Nat Commun ; 9(1): 4641, 2018 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-30389939

RESUMEN

Clémence Genthon and Céline Lopez-Roques, who performed sequencing, were inadvertently omitted from the author list. This has now been corrected in the PDF and HTML versions of the Article.

8.
Nat Commun ; 9(1): 2264, 2018 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-29891837

RESUMEN

The emergence of symbiotic interactions has been studied using population genomics in nature and experimental evolution in the laboratory, but the parallels between these processes remain unknown. Here we compare the emergence of rhizobia after the horizontal transfer of a symbiotic plasmid in natural populations of Cupriavidus taiwanensis, over 10 MY ago, with the experimental evolution of symbiotic Ralstonia solanacearum for a few hundred generations. In spite of major differences in terms of time span, environment, genetic background, and phenotypic achievement, both processes resulted in rapid genetic diversification dominated by purifying selection. We observe no adaptation in the plasmid carrying the genes responsible for the ecological transition. Instead, adaptation was associated with positive selection in a set of genes that led to the co-option of the same quorum-sensing system in both processes. Our results provide evidence for similarities in experimental and natural evolutionary transitions and highlight the potential of comparisons between both processes to understand symbiogenesis.


Asunto(s)
Evolución Molecular Dirigida , Evolución Molecular , Fabaceae/microbiología , Simbiosis/genética , Adaptación Fisiológica/genética , Cupriavidus/genética , Cupriavidus/fisiología , Redes Reguladoras de Genes , Transferencia de Gen Horizontal , Genes Bacterianos , Variación Genética , Mimosa/microbiología , Mutación , Plásmidos/genética , Ralstonia solanacearum/genética , Ralstonia solanacearum/fisiología , Simbiosis/fisiología
9.
Elife ; 62017 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-29022875

RESUMEN

Mutualism is of fundamental importance in ecosystems. Which factors help to keep the relationship mutually beneficial and evolutionarily successful is a central question. We addressed this issue for one of the most significant mutualistic interactions on Earth, which associates plants of the leguminosae family and hundreds of nitrogen (N2)-fixing bacterial species. Here we analyze the spatio-temporal dynamics of fixers and non-fixers along the symbiotic process in the Cupriavidus taiwanensis-Mimosa pudica system. N2-fixing symbionts progressively outcompete isogenic non-fixers within root nodules, where N2-fixation occurs, even when they share the same nodule. Numerical simulations, supported by experimental validation, predict that rare fixers will invade a population dominated by non-fixing bacteria during serial nodulation cycles with a probability that is function of initial inoculum, plant population size and nodulation cycle length. Our findings provide insights into the selective forces and ecological factors that may have driven the spread of the N2-fixation mutualistic trait.


Asunto(s)
Cupriavidus/fisiología , Mimosa/microbiología , Mimosa/fisiología , Fijación del Nitrógeno , Simbiosis , Cupriavidus/crecimiento & desarrollo , Cupriavidus/metabolismo , Análisis Espacio-Temporal
10.
Mol Biol Evol ; 34(10): 2503-2521, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28535261

RESUMEN

Ecological transitions between different lifestyles, such as pathogenicity, mutualism and saprophytism, have been very frequent in the course of microbial evolution, and often driven by horizontal gene transfer. Yet, how genomes achieve the ecological transition initiated by the transfer of complex biological traits remains poorly known. Here, we used experimental evolution, genomics, transcriptomics and high-resolution phenotyping to analyze the evolution of the plant pathogen Ralstonia solanacearum into legume symbionts, following the transfer of a natural plasmid encoding the essential mutualistic genes. We show that a regulatory pathway of the recipient R. solanacearum genome involved in extracellular infection of natural hosts was reused to improve intracellular symbiosis with the Mimosa pudica legume. Optimization of intracellular infection capacity was gained through mutations affecting two components of a new regulatory pathway, the transcriptional regulator efpR and a region upstream from the RSc0965-0967 genes of unknown functions. Adaptive mutations caused the downregulation of efpR and the over-expression of a downstream regulatory module, the three unknown genes RSc3146-3148, two of which encoding proteins likely associated to the membrane. This over-expression led to important metabolic and transcriptomic changes and a drastic qualitative and quantitative improvement of nodule intracellular infection. In addition, these adaptive mutations decreased the virulence of the original pathogen. The complete efpR/RSc3146-3148 pathway could only be identified in the genomes of the pathogenic R. solanacearum species complex. Our findings illustrate how the rewiring of a genetic network regulating virulence allows a radically different type of symbiotic interaction and contributes to ecological transitions and trade-offs.


Asunto(s)
Mimosa/genética , Ralstonia solanacearum/genética , Evolución Molecular Dirigida , Fabaceae/genética , Redes Reguladoras de Genes/genética , Transferencia de Gen Horizontal/genética , Genes Bacterianos/genética , Genoma Bacteriano/genética , Mutación , Plásmidos/genética , Ralstonia solanacearum/patogenicidad , Simbiosis/genética , Virulencia/genética
11.
Mol Ecol ; 26(7): 1818-1831, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27770459

RESUMEN

Experimental evolution is a powerful approach to study the process of adaptation to new environments, including the colonization of eukaryotic hosts. Facultative endosymbionts, including pathogens and mutualists, face changing and spatially structured environments during the symbiotic process, which impose diverse selection pressures. Here, we provide evidence that different selection regimes, involving different times spent in the plant environment, can result in either intra- or extracellular symbiotic adaptations. In previous work, we introduced the symbiotic plasmid of Cupriavidus taiwanensis, the rhizobial symbiont of Mimosa pudica, into the phytopathogen Ralstonia solanacearum and selected three variants able to form root nodules on M. pudica, two (CBM212 and CBM349) being able to rudimentarily infect nodule cells and the third one (CBM356) only capable of extracellular infection of nodules. Each nodulating ancestor was further challenged to evolve using serial ex planta-in planta cycles of either 21 (three short-cycle lineages) or 42 days (three long-cycle lineages). In this study, we compared the phenotype of the 18 final evolved clones. Evolution through short and long cycles resulted in similar adaptive paths on lineages deriving from the two intracellularly infectious ancestors, CBM212 and CBM349. In contrast, only short cycles allowed a stable acquisition of intracellular infection in lineages deriving from the extracellularly infecting ancestor, CBM356. Long cycles, instead, favoured improvement of extracellular infection. Our work highlights the importance of the selection regime in shaping desired traits during host-mediated selection experiments.


Asunto(s)
Evolución Biológica , Cupriavidus/genética , Mimosa/microbiología , Ralstonia solanacearum/genética , Simbiosis/genética , Adaptación Fisiológica/genética , Nodulación de la Raíz de la Planta , Raíces de Plantas/microbiología , Plásmidos/genética , Ralstonia solanacearum/fisiología
12.
PLoS Biol ; 12(9): e1001942, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25181317

RESUMEN

Horizontal gene transfer (HGT) is an important mode of adaptation and diversification of prokaryotes and eukaryotes and a major event underlying the emergence of bacterial pathogens and mutualists. Yet it remains unclear how complex phenotypic traits such as the ability to fix nitrogen with legumes have successfully spread over large phylogenetic distances. Here we show, using experimental evolution coupled with whole genome sequencing, that co-transfer of imuABC error-prone DNA polymerase genes with key symbiotic genes accelerates the evolution of a soil bacterium into a legume symbiont. Following introduction of the symbiotic plasmid of Cupriavidus taiwanensis, the Mimosa symbiont, into pathogenic Ralstonia solanacearum we challenged transconjugants to become Mimosa symbionts through serial plant-bacteria co-cultures. We demonstrate that a mutagenesis imuABC cassette encoded on the C. taiwanensis symbiotic plasmid triggered a transient hypermutability stage in R. solanacearum transconjugants that occurred before the cells entered the plant. The generated burst in genetic diversity accelerated symbiotic adaptation of the recipient genome under plant selection pressure, presumably by improving the exploration of the fitness landscape. Finally, we show that plasmid imuABC cassettes are over-represented in rhizobial lineages harboring symbiotic plasmids. Our findings shed light on a mechanism that may have facilitated the dissemination of symbiotic competency among α- and ß-proteobacteria in natura and provide evidence for the positive role of environment-induced mutagenesis in the acquisition of a complex lifestyle trait. We speculate that co-transfer of complex phenotypic traits with mutagenesis determinants might frequently enhance the ecological success of HGT.


Asunto(s)
Cupriavidus/genética , Transferencia de Gen Horizontal , Genes Bacterianos , Genoma Bacteriano , Plásmidos/metabolismo , Ralstonia solanacearum/genética , Transportadoras de Casetes de Unión a ATP/genética , Adaptación Fisiológica/genética , Evolución Biológica , Fabaceae/microbiología , Fabaceae/fisiología , Mimosa/microbiología , Mimosa/fisiología , Mutación , Simbiosis/genética
13.
Mol Plant Microbe Interact ; 27(9): 956-64, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25105803

RESUMEN

Nitrogen-fixing symbionts of legumes have appeared after the emergence of legumes on earth, approximately 70 to 130 million years ago. Since then, symbiotic proficiency has spread to distant genera of α- and ß-proteobacteria, via horizontal transfer of essential symbiotic genes and subsequent recipient genome remodeling under plant selection pressure. To tentatively replay rhizobium evolution in laboratory conditions, we previously transferred the symbiotic plasmid of the Mimosa symbiont Cupriavidus taiwanensis in the plant pathogen Ralstonia solanacearum, and selected spontaneous nodulating variants of the chimeric Ralstonia sp. using Mimosa pudica as a trap. Here, we pursued the evolution experiment by submitting two of the rhizobial drafts to serial ex planta-in planta (M. pudica) passages that may mimic alternating of saprophytic and symbiotic lives of rhizobia. Phenotyping 16 cycle-evolved clones showed strong and parallel evolution of several symbiotic traits (i.e., nodulation competitiveness, intracellular infection, and bacteroid persistence). Simultaneously, plant defense reactions decreased within nodules, suggesting that the expression of symbiotic competence requires the capacity to limit plant immunity. Nitrogen fixation was not acquired in the frame of this evolutionarily short experiment, likely due to the still poor persistence of final clones within nodules compared with the reference rhizobium C. taiwanensis. Our results highlight the potential of experimental evolution in improving symbiotic proficiency and for the elucidation of relationship between symbiotic capacities and elicitation of immune responses.


Asunto(s)
Mimosa/microbiología , Inmunidad de la Planta , Nodulación de la Raíz de la Planta , Ralstonia solanacearum/genética , Simbiosis/genética , Cupriavidus/genética , Evolución Molecular Dirigida , Leghemoglobina/análisis , Leghemoglobina/metabolismo , Mimosa/citología , Mimosa/inmunología , Fijación del Nitrógeno , Fenotipo , Raíces de Plantas/inmunología , Raíces de Plantas/microbiología , Plásmidos/genética , Ralstonia solanacearum/fisiología , Especies Reactivas de Oxígeno/análisis , Especies Reactivas de Oxígeno/metabolismo
14.
Plant J ; 77(6): 817-37, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24483147

RESUMEN

Rhizobium-induced root nodules are specialized organs for symbiotic nitrogen fixation. Indeterminate-type nodules are formed from an apical meristem and exhibit a spatial zonation which corresponds to successive developmental stages. To get a dynamic and integrated view of plant and bacterial gene expression associated with nodule development, we used a sensitive and comprehensive approach based upon oriented high-depth RNA sequencing coupled to laser microdissection of nodule regions. This study, focused on the association between the model legume Medicago truncatula and its symbiont Sinorhizobium meliloti, led to the production of 942 million sequencing read pairs that were unambiguously mapped on plant and bacterial genomes. Bioinformatic and statistical analyses enabled in-depth comparison, at a whole-genome level, of gene expression in specific nodule zones. Previously characterized symbiotic genes displayed the expected spatial pattern of expression, thus validating the robustness of our approach. We illustrate the use of this resource by examining gene expression associated with three essential elements of nodule development, namely meristem activity, cell differentiation and selected signaling processes related to bacterial Nod factors and redox status. We found that transcription factor genes essential for the control of the root apical meristem were also expressed in the nodule meristem, while the plant mRNAs most enriched in nodules compared with roots were mostly associated with zones comprising both plant and bacterial partners. The data, accessible on a dedicated website, represent a rich resource for microbiologists and plant biologists to address a variety of questions of both fundamental and applied interest.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Captura por Microdisección con Láser/métodos , Medicago truncatula/genética , Análisis de Secuencia de ARN/métodos , Sinorhizobium meliloti/genética , Expresión Génica , Perfilación de la Expresión Génica , Genes Bacterianos/genética , Medicago truncatula/citología , Meristema/genética , Fijación del Nitrógeno , Raíces de Plantas/genética , Nódulos de las Raíces de las Plantas/genética , Sinorhizobium meliloti/citología , Simbiosis
15.
DNA Res ; 20(4): 339-54, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23599422

RESUMEN

The availability of next-generation sequences of transcripts from prokaryotic organisms offers the opportunity to design a new generation of automated genome annotation tools not yet available for prokaryotes. In this work, we designed EuGene-P, the first integrative prokaryotic gene finder tool which combines a variety of high-throughput data, including oriented RNA-Seq data, directly into the prediction process. This enables the automated prediction of coding sequences (CDSs), untranslated regions, transcription start sites (TSSs) and non-coding RNA (ncRNA, sense and antisense) genes. EuGene-P was used to comprehensively and accurately annotate the genome of the nitrogen-fixing bacterium Sinorhizobium meliloti strain 2011, leading to the prediction of 6308 CDSs as well as 1876 ncRNAs. Among them, 1280 appeared as antisense to a CDS, which supports recent findings that antisense transcription activity is widespread in bacteria. Moreover, 4077 TSSs upstream of protein-coding or non-coding genes were precisely mapped providing valuable data for the study of promoter regions. By looking for RpoE2-binding sites upstream of annotated TSSs, we were able to extend the S. meliloti RpoE2 regulon by ∼3-fold. Altogether, these observations demonstrate the power of EuGene-P to produce a reliable and high-resolution automatic annotation of prokaryotic genomes.


Asunto(s)
Mapeo Cromosómico/métodos , Genoma Bacteriano , Anotación de Secuencia Molecular/métodos , Regulón , Sinorhizobium meliloti/genética , Programas Informáticos , Fijación del Nitrógeno/genética , Sistemas de Lectura Abierta , ARN no Traducido/genética , Factor sigma/genética , Sitio de Iniciación de la Transcripción
16.
ISME J ; 7(7): 1367-77, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23426010

RESUMEN

Soil bacteria known as rhizobia are able to establish an endosymbiosis with legumes that takes place in neoformed nodules in which intracellularly hosted bacteria fix nitrogen. Intracellular accommodation that facilitates nutrient exchange between the two partners and protects bacteria from plant defense reactions has been a major evolutionary step towards mutualism. Yet the forces that drove the selection of the late event of intracellular infection during rhizobium evolution are unknown. To address this question, we took advantage of the previous conversion of the plant pathogen Ralstonia solanacearum into a legume-nodulating bacterium that infected nodules only extracellularly. We experimentally evolved this draft rhizobium into intracellular endosymbionts using serial cycles of legume-bacterium cocultures. The three derived lineages rapidly gained intracellular infection capacity, revealing that the legume is a highly selective environment for the evolution of this trait. From genome resequencing, we identified in each lineage a mutation responsible for the extracellular-intracellular transition. All three mutations target virulence regulators, strongly suggesting that several virulence-associated functions interfere with intracellular infection. We provide evidence that the adaptive mutations were selected for their positive effect on nodulation. Moreover, we showed that inactivation of the type three secretion system of R. solanacearum that initially allowed the ancestral draft rhizobium to nodulate, was also required to permit intracellular infection, suggesting a similar checkpoint for bacterial invasion at the early nodulation/root infection and late nodule cell entry levels. We discuss our findings with respect to the spread and maintenance of intracellular infection in rhizobial lineages during evolutionary times.


Asunto(s)
Evolución Biológica , Fabaceae/microbiología , Rhizobium/genética , Simbiosis/genética , Sistemas de Secreción Bacterianos/genética , Mutación , Raíces de Plantas/microbiología , Rhizobium/patogenicidad , Factores de Virulencia/genética
17.
PLoS One ; 8(2): e56043, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23409119

RESUMEN

Rhizobia are symbiotic soil bacteria able to intracellularly colonize legume nodule cells and form nitrogen-fixing symbiosomes therein. How the plant cell cytoskeleton reorganizes in response to rhizobium colonization has remained poorly understood especially because of the lack of an in vitro infection assay. Here, we report on the use of the heterologous HeLa cell model to experimentally tackle this question. We observed that the model rhizobium Sinorhizobium meliloti, and other rhizobia as well, were able to trigger a major reorganization of actin cytoskeleton of cultured HeLa cells in vitro. Cell deformation was associated with an inhibition of the three major small RhoGTPases Cdc42, RhoA and Rac1. Bacterial entry, cytoskeleton rearrangements and modulation of RhoGTPase activity required an intact S. meliloti biosynthetic pathway for queuosine, a hypermodifed nucleoside regulating protein translation through tRNA, and possibly mRNA, modification. We showed that an intact bacterial queuosine biosynthetic pathway was also required for effective nitrogen-fixing symbiosis of S. meliloti with its host plant Medicago truncatula, thus indicating that one or several key symbiotic functions of S. meliloti are under queuosine control. We discuss whether the symbiotic defect of que mutants may originate, at least in part, from an altered capacity to modify plant cell actin cytoskeleton.


Asunto(s)
Citoesqueleto/metabolismo , Medicago truncatula/microbiología , Nucleósido Q/biosíntesis , Sinorhizobium meliloti/metabolismo , Simbiosis , Vías Biosintéticas , GTP Fosfohidrolasas/metabolismo , Células HeLa , Humanos , Mutación , Nucleósido Q/genética , Sinorhizobium meliloti/genética , Proteínas de Unión al GTP rho/metabolismo
18.
PLoS Biol ; 8(1): e1000280, 2010 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-20084095

RESUMEN

Rhizobia are phylogenetically disparate alpha- and beta-proteobacteria that have achieved the environmentally essential function of fixing atmospheric nitrogen in symbiosis with legumes. Ample evidence indicates that horizontal transfer of symbiotic plasmids/islands has played a crucial role in rhizobia evolution. However, adaptive mechanisms that allow the recipient genomes to express symbiotic traits are unknown. Here, we report on the experimental evolution of a pathogenic Ralstonia solanacearum chimera carrying the symbiotic plasmid of the rhizobium Cupriavidus taiwanensis into Mimosa nodulating and infecting symbionts. Two types of adaptive mutations in the hrpG-controlled virulence pathway of R. solanacearum were identified that are crucial for the transition from pathogenicity towards mutualism. Inactivation of the hrcV structural gene of the type III secretion system allowed nodulation and early infection to take place, whereas inactivation of the master virulence regulator hrpG allowed intracellular infection of nodule cells. Our findings predict that natural selection of adaptive changes in the legume environment following horizontal transfer has been a major driving force in rhizobia evolution and diversification and show the potential of experimental evolution to decipher the mechanisms leading to symbiosis.


Asunto(s)
Fabaceae/microbiología , Rhizobium/genética , Simbiosis/genética , Adaptación Biológica , Quimera , Evolución Molecular Dirigida , Transferencia de Gen Horizontal , Fijación del Nitrógeno , Nodulación de la Raíz de la Planta/genética , Polimorfismo de Nucleótido Simple , Rhizobium/fisiología
19.
J Biotechnol ; 140(1-2): 45-50, 2009 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-19103235

RESUMEN

Sinorhizobium meliloti is a symbiotic soil bacterium of the alphaproteobacterial subdivision. Like other rhizobia, S. meliloti induces nitrogen-fixing root nodules on leguminous plants. This is an ecologically and economically important interaction, because plants engaged in symbiosis with rhizobia can grow without exogenous nitrogen fertilizers. The S. meliloti-Medicago truncatula (barrel medic) association is an important symbiosis model. The S. meliloti genome was published in 2001, and the M. truncatula genome currently is being sequenced. Many new resources and data have been made available since the original S. meliloti genome annotation and an update was needed. In June 2008, we submitted our annotation update to the EMBL and NCBI databases. Here we describe this new annotation and a new web-based portal RhizoGATE. About 1000 annotation updates were made; these included assigning functions to 313 putative proteins, assigning EC numbers to 431 proteins, and identifying 86 new putative genes. RhizoGATE incorporates the new annotion with the S. meliloti GenDB project, a platform that allows annotation updates in real time. Locations of transposon insertions, plasmid integrations, and array probe sequences are available in the GenDB project. RhizoGATE employs the EMMA platform for management and analysis of transcriptome data and the IGetDB data warehouse to integrate a variety of heterogeneous external data sources.


Asunto(s)
Bases de Datos Genéticas , Genoma Bacteriano , Gestión de la Información , Sinorhizobium meliloti/genética , Proteínas Bacterianas/genética , Almacenamiento y Recuperación de la Información , Internet , Medicago truncatula , Análisis por Micromatrices , Interfaz Usuario-Computador
20.
Mol Plant Microbe Interact ; 21(9): 1232-41, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18700827

RESUMEN

Some Sinorhizobium meliloti mutants in genes involved in isoleucine, valine, and leucine biosynthesis were previously described as being unable to induce nodule formation on host plants. Here, we present a reappraisal of the interconnection between the branched-chain amino acid biosynthesis pathway and the nodulation process in S. meliloti. We characterized the symbiotic phenotype of seven mutants that are auxotrophic for isoleucine, valine, or leucine in two closely related S. meliloti strains, 1021 and 2011. We showed that all mutants were similarly impaired for nodulation and infection of the Medicago sativa host plant. In most cases, the nodulation phenotype was fully restored by the addition of the missing amino acids to the plant growth medium. This strongly suggests that auxotrophy is the cause of the nodulation defect of these mutants. However, we confirmed previous findings that ilvC and ilvD2 mutants in the S. meliloti 1021 genetic background could not be restored to nodulation by supplementation with exogenous amino acids even though their Nod factor production appeared to be normal.


Asunto(s)
Aminoácidos de Cadena Ramificada/biosíntesis , Medicago sativa/microbiología , Nódulos de las Raíces de las Plantas/microbiología , Sinorhizobium meliloti/fisiología , Proteínas Bacterianas/genética , Vías Biosintéticas/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Interacciones Huésped-Patógeno , Isoleucina/farmacología , Leucina/farmacología , Mutación , N-Acetilglucosaminiltransferasas/genética , Nodulación de la Raíz de la Planta/efectos de los fármacos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sinorhizobium meliloti/genética , Simbiosis/efectos de los fármacos , Simbiosis/genética , Simbiosis/fisiología , Valina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...