Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Stem Cell Rev Rep ; 17(2): 673-684, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33165749

RESUMEN

All-trans retinoic acid (ATRA) promotes the development and the function of insulin producing cells and induces partial differentiation of pancreatic tumor cells. A number of evidences clearly indicate that the ATRA mediated signaling may have a substantial role in therapeutic approaches based on restoration of functional ß-cells. Among the proteins up-regulated by ATRA, Vav1 is involved in maturation and function of haematopoietic cells and is essential for retinoids induced differentiation of tumor promyelocytes. The presence of Vav1 in solid tissues, including pancreas, is considered ectopic and no role in the differentiation of human epithelial cells has so far been described. We demonstrated here that Vav1 sustains the maturation to ß-cells of the normal precursors human Biliary Tree Stem/progenitor Cells (hBTSCs) induced by a differentiation medium containing ATRA and that, in the mature normal pancreas, insulin-producing cells express variable levels of Vav1. Using pancreatic ductal adenocarcinoma (PDAC)-derived cells, we also revealed that the ATRA induced up-modulation of Vav1 is essential for the retinoid-induced trans-differentiation of neoplastic cells into insulin producing cells. The results of this study identify Vav1 as crucial molecule in ATRA induced maturation of insulin producing cells and suggest this protein as a marker for new strategies ended to restore functional ß-cells. Graphical abstract.


Asunto(s)
Diferenciación Celular , Células Secretoras de Insulina/citología , Proteínas Proto-Oncogénicas c-vav , Tretinoina , Humanos , Proteínas Proto-Oncogénicas c-vav/genética , Tretinoina/farmacología
2.
J Oncol ; 2019: 7512632, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31636668

RESUMEN

Initially correlated with hematopoietic precursors, the surface expression of CD133 was also found in epithelial and nonepithelial cells from adult tissues in which it has been associated with a number of biological events. CD133 is expressed in solid tumors as well, including breast cancer, in which most of the studies have been focused on its use as a surface marker for the detection of cells with stem-like properties (i.e., cancer stem cells (CSCs)). Differently with other solid tumors, very limited and in part controversial are the information about the significance of CD133 in breast cancer, the most common malignancy among women in industrialized countries. In this review, we summarize the latest findings about the implication of CD133 in breast tumors, highlighting its role in tumor cells with a triple negative phenotype in which it directly regulates the expression of proteins involved in metastasis and drug resistance. We provide updates about the prognostic role of CD133, underlining its value as an indicator of increased malignancy of both noninvasive and invasive breast tumor cells. The molecular mechanisms at the basis of the regulation of CD133 levels in breast tumors have also been reviewed, highlighting experimental strategies capable to restrain its level that could be taken into account to reduce malignancy and/or to prevent the progression of breast tumors.

3.
Mol Carcinog ; 58(5): 708-721, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30582225

RESUMEN

Cells in non-invasive breast lesions are widely believed to possess molecular alterations that render them either susceptible or refractory to the acquisition of invasive capability. One such alteration could be the ectopic expression of the ß2 isoform of phosphoinositide-dependent phospholipase C (PLC-ß2), known to counteract the effects of hypoxia in low-invasive breast tumor-derived cells. Here, we studied the correlation between PLC-ß2 levels and the propensity of non-invasive breast tumor cells to acquire malignant features. Using archival FFPE samples and DCIS-derived cells, we demonstrate that PLC-ß2 is up-regulated in DCIS and that its forced down-modulation induces an epithelial-to-mesenchymal shift, expression of the cancer stem cell marker CD133, and the acquisition of invasive properties. The ectopic expression of PLC-ß2 in non-transformed and DCIS-derived cells is, to some extent, dependent on the de-regulation of miR-146a, a tumor suppressor miRNA in invasive breast cancer. Interestingly, an inverse relationship between the two molecules, indicative of a role of miR-146a in targeting PLC-ß2, was not detected in primary DCIS from patients who developed a second invasive breast neoplasia. This suggests that alterations of the PLC-ß2/miR-146a relationship in DCIS may constitute a molecular risk factor for the appearance of new breast lesions. Since neither traditional classification systems nor molecular characterizations are able to predict the malignant potential of DCIS, as is possible for invasive ductal carcinoma (IDC), we propose that the assessment of the PLC-ß2/miR-146a levels at diagnosis could be beneficial for identifying whether DCIS patients may have either a low or high propensity for invasive recurrence.


Asunto(s)
Neoplasias de la Mama/patología , Carcinoma Ductal de Mama/patología , Carcinoma Intraductal no Infiltrante/patología , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , Células Madre Neoplásicas/patología , Fosfolipasa C beta/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Apoptosis , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Carcinoma Ductal de Mama/genética , Carcinoma Ductal de Mama/metabolismo , Carcinoma Intraductal no Infiltrante/genética , Carcinoma Intraductal no Infiltrante/metabolismo , Proliferación Celular , Femenino , Estudios de Seguimiento , Humanos , Persona de Mediana Edad , Invasividad Neoplásica , Células Madre Neoplásicas/metabolismo , Fosfolipasa C beta/genética , Pronóstico , Células Tumorales Cultivadas
4.
J Cell Physiol ; 234(7): 11188-11199, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30565691

RESUMEN

Clusterin (CLU) is a chaperone-like protein with multiple functions. sCLU is frequently upregulated in prostate tumor cells after chemo- or radiotherapy and after surgical or pharmacological castration. Moreover, CLU has been documented to modulate the cellular homolog of murine thymoma virus akt8 oncogene (AKT) activity. Here, we investigated how CLU overexpression influences phosphatidylinositol 3'-kinase (PI3K)/AKT signaling in human normal and cancer epithelial prostate cells. Human prostate cells stably transfected with CLU were broadly profiled by reverse phase protein array (RPPA), with particular emphasis on the PI3K/AKT pathway. The effect of CLU overexpression on normal and cancer cell motility was also tested. Our results clearly indicate that CLU overexpression enhances phosphorylation of AKT restricted to isoform 2. Mechanistically, this can be explained by the finding that the phosphatase PH domain leucine-rich repeat-containing protein phosphatase 1 (PHLPP1), known to dephosphorylate AKT2 at S474, is markedly downregulated by CLU, whereas miR-190, a negative regulator of PHLPP1, is upregulated. Moreover, we found that phosphatase and tensin homolog (PTEN) was heavily phosphorylated at the inhibitory site S380, contributing to the hyperactivation of AKT signaling. By keeping AKT2 phosphorylation high, CLU dramatically enhances the migratory behavior of prostate epithelial cell lines with different migratory and invasive phenotypes, namely prostate normal epithelial 1A (PNT1A) and prostatic carcinoma 3 (PC3) cells. Altogether, our results unravel for the first time a circuit by which CLU can switch a low migration phenotype toward a high migration phenotype, through miR-190-dependent downmodulation of PHLPP1 expression and, in turn, stabilization of AKT2 phosphorylation.


Asunto(s)
Clusterina/metabolismo , Proteínas Nucleares/metabolismo , Fosfohidrolasa PTEN/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Neoplasias de la Próstata/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Células 3T3 , Animales , Línea Celular Tumoral , Movimiento Celular/fisiología , Clusterina/genética , Células Epiteliales/metabolismo , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Masculino , Ratones , MicroARNs/genética , Células PC-3 , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Próstata/patología , Proteínas Proto-Oncogénicas c-akt/genética , Transducción de Señal/genética
5.
BMC Cancer ; 18(1): 1194, 2018 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-30497437

RESUMEN

BACKGROUND: The presence of hypoxic areas is common in all breast lesions but no data clearly correlate low oxygenation with the acquisition of malignant features by non-invasive cells, particularly by cells from ductal carcinoma in situ (DCIS), the most frequently diagnosed tumor in women. METHODS: By using a DCIS-derived cell line, we evaluated the effects of low oxygen availability on malignant features of non-invasive breast tumor cells and the possible role of all-trans retinoic acid (ATRA), a well-known anti-leukemic drug, in counteracting the effects of hypoxia. The involvement of the ß2 isoform of PI-PLC (PLC-ß2), an ATRA target in myeloid leukemia cells, was also investigated by specific modulation of the protein expression. RESULTS: We demonstrated that moderate hypoxia is sufficient to induce, in DCIS-derived cells, motility, epithelial-to-mesenchymal transition (EMT) and expression of the stem cell marker CD133, indicative of their increased malignant potential. Administration of ATRA supports the epithelial-like phenotype of DCIS-derived cells cultured under hypoxia and keeps down the number of CD133 positive cells, abrogating almost completely the effects of poor oxygenation. We also found that the mechanisms triggered by ATRA in non-invasive breast tumor cells cultured under hypoxia is in part mediated by PLC-ß2, responsible to counteract the effects of low oxygen availability on CD133 levels. CONCLUSIONS: Overall, we assigned to hypoxia a role in increasing the malignant potential of DCIS-derived cells and we identified in ATRA, currently used in treatment of acute promyelocytic leukemia (APL), an agonist potentially useful in preventing malignant progression of non-invasive breast lesions showing hypoxic areas.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Hipoxia/metabolismo , Tretinoina/farmacología , Biomarcadores , Neoplasias de la Mama/genética , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Progresión de la Enfermedad , Transición Epitelial-Mesenquimal/efectos de los fármacos , Transición Epitelial-Mesenquimal/genética , Femenino , Expresión Génica , Humanos , Hipoxia/genética , Inmunohistoquímica , Clasificación del Tumor , Estadificación de Neoplasias , Oxígeno/metabolismo , Fosfolipasa C beta/metabolismo
6.
Oncotarget ; 9(34): 23543-23553, 2018 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-29805754

RESUMEN

A substantial number of ductal carcinoma in situ (DCIS) detected by mammography never progress to invasive ductal carcinoma (IDC) and current approaches fail to identify low-risk patients not at need of adjuvant therapies. We aimed to identify the key miRNAs protecting DCIS from malignant evolution, that may constitute markers for non-invasive lesions. We studied 100 archived DCIS samples, including pure DCIS, DCIS with adjacent IDC and pure DCIS from patients with subsequent IDC in contralateral breast or no recurrence. A DCIS derived cell line was used for molecular and cellular studies. A genome wide study revealed that pure DCIS has higher miR-126 and miR-218 expression than DCIS with adjacent IDC lesions or than IDC. The down-regulation of miR-126 and miR-218 promoted invasiveness in vitro and, in patients with pure DCIS, was associated with later onset of IDC. Survival studies of independent cohorts indicated that both miRNAs play a protective role in IDC. The clinical findings are in agreement with the miRNAs' roles in cell adhesion, differentiation and proliferation. We propose that miR-126 and miR-218 have a protective role in DCIS and represent novel biomarkers for the risk assessment in women with early detection of breast cancer.

7.
J Cell Physiol ; 233(10): 6440-6454, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29667769

RESUMEN

Despite considerable progress in treatment protocols, B-lineage acute lymphoblastic leukemia (B-ALL) displays a poor prognosis in about 15-20% of pediatric cases and about 60% of adult patients. In addition, life-long irreversible late effects from chemo- and radiation therapy, including secondary malignancies, are a growing problem for leukemia survivors. Targeted therapy holds promising perspectives for cancer treatment as it may be more effective and have fewer side effects than conventional therapies. The phosphatidylinositol 3-phosphate kinase (PI3K)/Akt/mechanistic target of rapamycin (mTOR) signaling pathway is a key regulatory cascade which controls proliferation, survival and drug-resistance of cancer cells, and it is frequently upregulated in the different subtypes of B-ALL, where it plays important roles in the pathophysiology, maintenance and progression of the disease. Moreover, activation of this signaling cascade portends a poorer prognosis in both pediatric and adult B-ALL patients. Promising preclinical data on PI3K/Akt/mTOR inhibitors have documented their anticancer activity in B-ALL and some of these novel drugs have entered clinical trials as they could lead to a longer event-free survival and reduce therapy-associated toxicity for patients with B-ALL. This review highlights the current status of PI3K/Akt/mTOR inhibitors in B-ALL, with an emphasis on emerging evidence of the superior efficacy of synergistic combinations involving the use of traditional chemotherapeutics or other novel, targeted agents.


Asunto(s)
Fosfatidilinositol 3-Quinasa/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-akt/genética , Serina-Treonina Quinasas TOR/genética , Linfocitos B/patología , Resistencia a Antineoplásicos/genética , Sinergismo Farmacológico , Humanos , Terapia Molecular Dirigida , Inhibidores de las Quinasa Fosfoinosítidos-3 , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Sirolimus/uso terapéutico , Serina-Treonina Quinasas TOR/antagonistas & inhibidores
8.
Oncotarget ; 9(24): 17220-17237, 2018 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-29682218

RESUMEN

Skeletal muscle is a dynamic tissue with remarkable plasticity and its growth and regeneration are highly organized, with the activation of specific transcription factors, proliferative pathways and cytokines. The decline of skeletal muscle tissue with age, is one of the most important causes of functional loss of independence in older adults. Maintaining skeletal muscle function throughout the lifespan is a prerequisite for good health and independent living. Physical activity represents one of the most effective preventive agents for muscle decay in aging. Several studies have underlined the importance of microRNAs (miRNAs) in the control of myogenesis and of skeletal muscle regeneration and function. In this review, we reported an overview and recent advances about the role of miRNAs expressed in the skeletal muscle, miRNAs regulation by exercise in skeletal muscle, the consequences of different physical exercise training modalities in the skeletal muscle miRNA profile, their regulation under pathological conditions and the role of miRNAs in age-related muscle wasting. Specific miRNAs appear to be involved in response to different types of exercise and therefore to play an important role in muscle fiber identity and myofiber gene expression in adults and elder population. Understanding the roles and regulation of skeletal muscle miRNAs during muscle regeneration may result in new therapeutic approaches in aging or diseases with impaired muscle function or re-growth.

9.
Oncotarget ; 9(24): 17238-17254, 2018 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-29682219

RESUMEN

Cardiovascular diseases (CVDs) are one of the most important causes of mortality worldwide, therefore the need of effective preventive strategies is imperative. Aging is associated with significant changes in both cardiovascular structure and function that lower the threshold for clinical signs and symptoms, making older people more susceptible to CVDs morbidity and mortality. microRNAs (miRNAs) modulate gene expression at post-transcriptional level and increasing evidence has shown that miRNAs are involved in cardiovascular physiology and in the pathogenesis of CVDs. Physical activity is recommended by the medical community and the cardiovascular benefits of exercise are multifactorial and include important systemic effects on skeletal muscle, the peripheral vasculature, metabolism, and neuroendocrine systems, as well as beneficial modifications within the myocardium itself. In this review we describe the role of miRNAs and their dysregulation in several types of CVDs. We provide an overview of miRNAs in CVDs and of the effects of physical activity on miRNA regulation involved in both cardiovascular pathologies and age-related cardiovascular changes and diseases. Circulating miRNAs in response to acute and chronic sport exercise appear to be modulated following training exercise, and may furthermore serve as potential biomarkers for CVDs and different age-related CVDs.

10.
Mol Oncol ; 12(7): 1012-1025, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29658179

RESUMEN

Targeting different members of the Akt pathways is a promising therapeutic chance in solid tumors including breast cancer. The variable expression levels of Akt isoforms with opposite effects on tumor growth and metastasis, however, make it difficult to select the inhibitors to be used for specific breast tumor subtypes. Using in vitro and in vivo models, we demonstrated here that Vav1, ectopically expressed in invasive breast tumors derived cells, downmodulates Akt acting at expression and/or activation levels depending on tumor subtype. The decreased p-Akt1 (Ser473) levels are a common effect of Vav1 upmodulation, suggesting that, in breast tumor-derived cells and independently of their phenotype, Vav1 interferes with signaling pathways ended to specifically recruit Akt1. Only in ER-negative cell lines, the silencing of Vav1 induced the expression but not the activation of Akt2. A retrospective analysis of early invasive breast tumors allowed to establish the prognostic significance of the p-Akt/Vav1 relationship. In particular, low Vav1 levels negatively influence the follow-up of patients with low p-Akt in their primary tumors and subjected to adjuvant chemotherapy. As the use of specific or pan Akt inhibitors may not be sufficient or may even be detrimental, increasing the levels of Vav1 could be a new approach to improve breast cancer outcomes. This might be particularly relevant for tumors with a triple-negative phenotype, for which target-based therapies are not currently available.


Asunto(s)
Neoplasias de la Mama/clasificación , Neoplasias de la Mama/metabolismo , Regulación hacia Abajo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-vav/metabolismo , Anciano , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Proliferación Celular , Quimioterapia Adyuvante , Supervivencia sin Enfermedad , Femenino , Silenciador del Gen , Humanos , Persona de Mediana Edad , Invasividad Neoplásica , Fenotipo , Fosforilación , Pronóstico , Resultado del Tratamiento , Neoplasias de la Mama Triple Negativas/patología , Ensayos Antitumor por Modelo de Xenoinjerto
11.
J Cell Mol Med ; 22(6): 3149-3158, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29532991

RESUMEN

It has been recently demonstrated that high pre-treatment levels of miR-29b positively correlated with the response of patients with acute myeloid leukaemia (AML) to hypomethylating agents. Upmodulation of miR-29b by restoring its transcriptional machinery appears indeed a tool to improve therapeutic response in AML. In cells from acute promyelocytic leukaemia (APL), miR-29b is regulated by PU.1, in turn upmodulated by agonists currently used to treat APL. We explored here the ability of PU.1 to also regulate miR-29b in non-APL cells, in order to identify agonists that, upmodulating PU.1 may be beneficial in hypomethylating agents-based therapies. We found that PU.1 may regulate miR-29b in the non-APL Kasumi-1 cells, showing the t(8;21) chromosomal rearrangement, which is prevalent in AML and correlated with a relatively low survival. We demonstrated that the PU.1-mediated contribution of the 2 miR-29b precursors is cell-related and almost completely dependent on adequate levels of Vav1. Nuclear PU.1/Vav1 association accompanies the transcription of miR-29b but, at variance with the APL-derived NB4 cells, in which the protein is required for the association of PU.1 with both miRNA promoters, Vav1 is part of molecular complexes to the PU.1 consensus site in Kasumi-1. Our results add new information on the transcriptional machinery that regulates miR-29b expression in AML-derived cells and may help in identifying drugs useful in upmodulation of this miRNA in pre-treatment of patients with non-APL leukaemia who can take advantage from hypomethylating agent-based therapies.


Asunto(s)
Leucemia Mieloide Aguda/genética , MicroARNs/genética , Proteínas Proto-Oncogénicas c-vav/genética , Proteínas Proto-Oncogénicas/genética , Transactivadores/genética , Diferenciación Celular/genética , Línea Celular Tumoral , Regulación Leucémica de la Expresión Génica/genética , Humanos , Leucemia Mieloide Aguda/patología , Leucemia Promielocítica Aguda/genética , Leucemia Promielocítica Aguda/patología , Regiones Promotoras Genéticas
12.
Oncotarget ; 9(17): 14005-14034, 2018 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-29568412

RESUMEN

Cancer patients experience symptoms and adverse effects of treatments that may last even after the end of treatments. Exercise is a safe, non-pharmacological and cost-effective therapy that can provide several health benefits in cancer patient and survivors, reducing cancer symptoms and cancer treatment side effects. The purpose of this review is to describe how the physical exercise is capable to reduce cancer symptoms and cancer treatment side effects. We realized a pragmatic classification of symptoms, dividing them into physical, psychological and psycho-physical aspects. For each symptom we discuss causes, therapies, we analyse the effects of physical exercise and we summarize the most effective type of exercise to reduce the symptoms. This review also points out what are the difficulties that patients and survivors face during the practice of physical activity and provides some solutions to overcome these barriers. Related to each specific cancer, it emerges that type, frequency and intensity of physical exercise could be prescribed and supervised as a therapeutic program, like it occurs for the type, dose and duration of a drug treatment.

13.
BMC Cancer ; 17(1): 617, 2017 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-28870198

RESUMEN

BACKGROUND: The malignant potential of triple negative breast cancer (TNBC) is also dependent on a sub-population of cells with a stem-like phenotype. Among the cancer stem cell markers, CD133 and EpCAM strongly correlate with breast tumor aggressiveness, suggesting that simultaneous targeting of the two surface antigens may be beneficial in treatment of TNBC. Since in TNBC-derived cells we demonstrated that PLC-ß2 induces the conversion of CD133high to CD133low cells, here we explored its possible role in down-modulating the expression of both CD133 and EpCAM and, ultimately, in reducing the number of TNBC cells with a stem-like phenotype. METHODS: A magnetic step-by-step cell isolation with antibodies directed against CD133 and/or EpCAM was performed on the TNBC-derived MDA-MB-231 cell line. In the same cell model, PLC-ß2 was over-expressed or down-modulated and cell proliferation and invasion capability were evaluated by Real-time cell assays. The surface expression of CD133, EpCAM and CD44 in the different experimental conditions were measured by multi-color flow cytometry immunophenotyping. RESULTS: A CD133+/EpCAM+ sub-population with high proliferation rate and invasion capability is present in the MDA-MB-231 cell line. Over-expression of PLC-ß2 in CD133+/EpCAM+ cells reduced the surface expression of both CD133 and EpCAM, as well as proliferation and invasion capability of this cellular subset. On the other hand, the up-modulation of PLC-ß2 in the whole MDA-MB-231 cell population reduced the number of cells with a CD44+/CD133+/EpCAM+ stem-like phenotype. CONCLUSIONS: Since selective targeting of the cells with the highest aggressive potential may have a great clinical importance for TNBC, the up-modulation of PLC-ß2, reducing the number of cells with a stem-like phenotype, may be a promising goal for novel therapies aimed to prevent the progression of aggressive breast tumors.


Asunto(s)
Antígeno AC133/metabolismo , Molécula de Adhesión Celular Epitelial/metabolismo , Fosfolipasa C beta/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Biomarcadores , Recuento de Células , Línea Celular Tumoral , Proliferación Celular , Progresión de la Enfermedad , Femenino , Técnica del Anticuerpo Fluorescente , Humanos , Inmunofenotipificación , Clasificación del Tumor , Células Madre Neoplásicas/metabolismo , Fenotipo , Fosfolipasa C beta/genética
14.
Eur J Dermatol ; 27(4): 363-368, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28524055

RESUMEN

Of skin cancers, 9% arise at the periocular level, constituting a significant threat due to the proximity to intracranial structures, such as the eyes, nerve endings and proximal tissues. Tumour recurrence can be frequent and represents a primary clinical challenge for the surgeon. To present a retrospective study on the treatment of eyelid tumours at a tertiary care centre in Italy over an eight-year period and, in particular, to underline the risk factors associated with tumour relapse. Among a cohort of 205 patients, a retrospective study was conducted on 142 basal cell carcinoma (BCC) patients with eyelid tumours treated with surgical excision. Relapse-free survival was assessed using univariate Kaplan-Meier and multivariate Cox regression analysis. Over an eight-year study period, we detected 23 cases of BCC recurrence, with tumour localization associating with tumour relapse, representing an independent risk factor. The extent of the area of excision was significantly associated with relapse, but not margin positivity which was associated with reduced relapse-free survival. To minimize relapse of basal cell carcinoma during patient management, relevant factors to consider before and after tumour excision include tumour localization, margin invasion, and extension of the excision, but not the surgical technique used.


Asunto(s)
Carcinoma Basocelular/cirugía , Neoplasias de los Párpados/cirugía , Recurrencia Local de Neoplasia , Neoplasias Cutáneas/cirugía , Anciano , Anciano de 80 o más Años , Supervivencia sin Enfermedad , Párpados/patología , Femenino , Humanos , Aparato Lagrimal/patología , Masculino , Márgenes de Escisión , Neoplasia Residual , Estudios Retrospectivos , Factores de Riesgo
15.
Oncotarget ; 8(14): 23213-23227, 2017 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-28390196

RESUMEN

B-acute lymphoblastic leukemia (B-ALL) is a malignant disorder characterized by the abnormal proliferation of B-cell progenitors. Philadelphia chromosome-positive (Ph+) B-ALL is a subtype that expresses the Bcr-Abl fusion protein which represents a negative prognostic factor. Constitutive activation of the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) network is a common feature of B-ALL, influencing cell growth and survival. In the present study, we aimed to investigate the efficacy of PI3K isoform inhibition in B-ALL cell lines harboring the Bcr-Abl fusion protein.We studied the effects of anti Bcr-Abl drugs Imatinib, Nilotinib and GZD824 associated with PI3K isoform inhibitors. We used a panel of six compounds which specifically target PI3K isoforms including the pan-PI3K inhibitor ZSTK474, p110α BYL719 inhibitor and the dual p110γ/p110δ inhibitor IPI145. The effects of single drugs and of several drug combinations were analyzed to assess cytotoxicity by MTS assays, apoptosis and autophagy by flow cytometry and Western blot, as well as the phosphorylation status of the pathway.ZSTK474, BYL719 and IPI145 administered in combination with imatinib, nilotinib and GZD824 for 48 h, decreased cell viability, induced apoptosis and autophagy in a marked synergistic manner.These findings suggest that selected PI3K isoform inhibitors used in combination with anti Bcr-Abl drugs may be an attractive novel therapeutic intervention in Ph+ B-ALL.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Proteínas de Fusión bcr-abl/antagonistas & inhibidores , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Inhibidores de las Quinasa Fosfoinosítidos-3 , Inhibidores de Proteínas Quinasas/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Apoptosis/efectos de los fármacos , Benzamidas/administración & dosificación , Benzamidas/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Sinergismo Farmacológico , Humanos , Mesilato de Imatinib/administración & dosificación , Mesilato de Imatinib/farmacología , Isoenzimas/antagonistas & inhibidores , Isoquinolinas/administración & dosificación , Isoquinolinas/farmacología , Inhibidores de Proteínas Quinasas/administración & dosificación , Purinas/administración & dosificación , Purinas/farmacología , Pirazoles/administración & dosificación , Pirazoles/farmacología , Pirimidinas/administración & dosificación , Pirimidinas/farmacología , Tiazoles/administración & dosificación , Tiazoles/farmacología , Triazinas/administración & dosificación , Triazinas/farmacología
16.
Oncotarget ; 7(48): 79842-79853, 2016 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-27821800

RESUMEN

Philadelphia chromosome-positive (Ph+) Acute Lymphoblastic Leukemia (ALL) accounts for 25-30% of adult ALL and its incidence increases with age in adults >40 years old. Irrespective of age, the ABL1 fusion genes are markers of poor prognosis and amplification of the NUP214-ABL1 oncogene can be detected mainly in patients with T-ALL. T cell malignancies harboring the ABL1 fusion genes are sensitive to many cytotoxic agents, but up to date complete remissions have not been achieved. The PI3K/Akt/mTOR signaling pathway is often activated in leukemias and plays a crucial role in leukemogenesis.We analyzed the effects of three BCR-ABL1 tyrosine kinase inhibitors (TKIs), alone and in combination with a panel of selective PI3K/Akt/mTOR inhibitors, on three NUP214-ABL1 positive T-ALL cell lines that also displayed PI3K/Akt/mTOR activation. Cells were sensitive to anti BCR-ABL1 TKIs Imatinib, Nilotinib and GZD824, that specifically targeted the ABL1 fusion protein, but not the PI3K/Akt/mTOR axis. Four drugs against the PI3K/Akt/mTOR cascade, GSK690693, NVP-BGT226, ZSTK474 and Torin-2, showed marked cytotoxic effects on T-leukemic cells, without affecting the NUP214-ABL1 kinase and related pathway. Dephosphorylation of pAkt and pS6 showed the cytotoxicity of these compounds. Either single or combined administration of drugs against the different targets displayed inhibition of cellular viability associated with a concentration-dependent induction of apoptosis, cell cycle arrest in G0/G1 phase and autophagy, having the combined treatments a significant synergistic cytotoxic effect. Co-targeting NUP214-ABL1 fusion gene and PI3K/Akt/mTOR signaling pathway could represent a new and effective pharmacological strategy to improve the outcome in NUP214-ABL1 positive T-ALL.


Asunto(s)
Proteínas de Complejo Poro Nuclear/genética , Proteínas Oncogénicas v-abl/genética , Proteínas de Fusión Oncogénica/antagonistas & inhibidores , Proteínas de Fusión Oncogénica/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Inhibidores de Proteínas Quinasas/farmacología , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Sinergismo Farmacológico , Humanos , Mesilato de Imatinib/farmacología , Imidazoles/farmacología , Terapia Molecular Dirigida/métodos , Proteínas de Complejo Poro Nuclear/antagonistas & inhibidores , Proteína Oncogénica v-akt/antagonistas & inhibidores , Proteína Oncogénica v-akt/metabolismo , Proteínas Oncogénicas v-abl/antagonistas & inhibidores , Fosfatidilinositol 3-Quinasas/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Pirimidinas/farmacología , Quinolinas/farmacología , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/metabolismo
17.
Oncotarget ; 7(34): 55690-55703, 2016 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-27494886

RESUMEN

An attractive molecular target for novel anti-cancer therapies is the phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway which is commonly deregulated in many types of cancer. Nevertheless, the effects of PI3K/Akt/mTOR inhibitors on T lymphocytes, a key component of immune responses, have been seldom explored. In this study we investigated the effects on human CD4+ T-cells of a panel of PI3K/Akt/mTOR inhibitors: BGT226, Torin-2, MK-2206, and ZSTK474. We also assessed their efficacy against two acute leukemia T cell lines. T lymphocytes were stimulated with phytohemagglutinin. Inhibitor effects on cell cycle and apoptosis were analyzed by flow cytometry, while cytotoxicity was assessed by MTT assays. In addition, the activation status of the pathway as well as induction of autophagy were analyzed by Western blotting. Quiescent healthy T lymphocytes were unaffected by the drugs whereas mitogen-stimulated lymphocytes as well as leukemic cell lines displayed a cell cycle block, caspase-dependent apoptosis, and dephosphorylation of key components of the signaling pathway. Autophagy was also induced in proliferating lymphocytes and in JURKAT and MOLT-4 cell lines. When autophagy was inhibited by 3-methyladenine or Bafilomycin A1, drug cytotoxicity was increased, indicating that autophagy is a protective mechanism. Therefore, our findings suggest that PI3K/Akt/mTOR inhibitors preserve lymphocyte viability. This is a valuable result to be taken into account when selecting drugs for targeted cancer therapy in order to minimize detrimental effects on immune function.


Asunto(s)
Linfocitos T CD4-Positivos/efectos de los fármacos , Inhibidores de las Quinasa Fosfoinosítidos-3 , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Autofagia/efectos de los fármacos , Linfocitos T CD4-Positivos/inmunología , Línea Celular Tumoral , Humanos , Imidazoles/farmacología , Activación de Linfocitos , Terapia Molecular Dirigida , Naftiridinas/farmacología , Leucemia-Linfoma Linfoblástico de Células T Precursoras/inmunología , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patología , Quinolinas/farmacología
18.
Cell Oncol (Dordr) ; 39(5): 483-489, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27480083

RESUMEN

PURPOSE: Reduced expression of miR-142-3p has been found to be associated with the development of various subtypes of myeloid leukemia, including acute promyelocytic leukemia (APL). In APL-derived cells, miR-142-3p expression can be restored by all-trans retinoic acid (ATRA), which induces the completion of their maturation program. Here, we aimed to assess whether PU.1, essential for ATRA-induced gene transcription, regulates the expression of miR-142-3p in APL-derived cells and, based on the established cooperation between PU.1 and Vav1 in modulating gene expression, to evaluate the role of Vav1 in restoring the expression of miR-142-3p. METHODS: ATRA-induced increases in PU.1 and Vav1 expression in APL-derived NB4 cells were counteracted with specific siRNAs, and the expression of miR-142-3p was measured by quantitative real-time PCR (qRT-PCR). The recruitment of PU.1 and/or Vav1 to the regulatory region of miR-142 was assessed by quantitative chromatin immunoprecipitation (Q-ChIP). Synthetic inhibitors or mimics for miR-142-3p were used to assess whether this miRNA plays a role in regulating the expression of PU.1 and/or Vav1. RESULTS: We found that the expression of miR-142-3p in differentiating APL-derived NB4 cells is dependent on PU.1, and that Vav1 is essential for the recruitment of this transcription factor to its cis-binding element on the miR-142 promoter. In addition, we found that in ATRA-treated NB4 cells miR-142-3p sustains agonist-induced increases in both PU.1 and Vav1. CONCLUSIONS: Our results suggest the existence of a Vav1/PU.1/miR-142-3p network that supports ATRA-induced differentiation in APL-derived cells. Since selective regulation of miRNAs may play a role in the future treatment of hematopoietic malignancies, our results may provide a basis for the development of new therapeutic strategies to restore the expression of miR-142-3p.


Asunto(s)
Regulación Leucémica de la Expresión Génica/genética , Leucemia Promielocítica Aguda/genética , MicroARNs/genética , Proteínas Proto-Oncogénicas c-vav/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Transactivadores/metabolismo , Antineoplásicos/farmacología , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Inmunoprecipitación de Cromatina , Técnicas de Silenciamiento del Gen , Humanos , Leucemia Promielocítica Aguda/tratamiento farmacológico , Leucemia Promielocítica Aguda/metabolismo , MicroARNs/biosíntesis , Reacción en Cadena en Tiempo Real de la Polimerasa , Tretinoina/farmacología
19.
Mol Carcinog ; 55(12): 2210-2221, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-26785288

RESUMEN

Limited oxygen availability plays a critical role in the malignant progression of breast cancer by orchestrating a complex modulation of the gene transcription largely dependent on the tumor phenotype. Invasive breast tumors belonging to different molecular subtypes are characterized by over-expression of PLC-ß2, whose amount positively correlates with the malignant evolution of breast neoplasia and supports the invasive potential of breast tumor cells. Here we report that hypoxia modulates the expression of PLC-ß2 in breast tumor cells in a phenotype-related manner, since a decrease of the protein was observed in the BT-474 and MCF7 cell lines while an increase was revealed in MDA-MB-231 cells as a consequence of low oxygen availability. Under hypoxia, the down-modulation of PLC-ß2 was mainly correlated with the decrease of the EMT marker E-cadherin in the BT-474 cells and with the up-regulation of the stem cell marker CD133 in MCF7 cells. The increase of PLC-ß2 induced by low oxygen in MDA-MB-231 cells supports the hypoxia-related reorganization of actin cytoskeleton and sustains invasion capability. In all examined cell lines, but with an opposite role in the ER-positive and ER-negative cells, PLC-ß2 was involved in the hypoxia-induced increase of HIF-1α, known to affect both EMT and CD133 expression. Our data include PLC-ß2 in the complex and interconnected signaling pathways induced by low oxygen availability in breast tumor cells and suggest that the forced modulation of PLC-ß2 programmed on the basis of tumor phenotype may prevent the malignant progression of breast neoplasia as a consequence of intra-tumoral hypoxia. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Neoplasias de la Mama/genética , Regulación Neoplásica de la Expresión Génica , Hipoxia/genética , Fosfolipasa C beta/genética , Mama/metabolismo , Mama/patología , Neoplasias de la Mama/complicaciones , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Hipoxia de la Célula , Línea Celular Tumoral , Femenino , Humanos , Hipoxia/complicaciones , Hipoxia/metabolismo , Hipoxia/patología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Oxígeno/metabolismo , Fosfolipasa C beta/análisis , Fosfolipasa C beta/metabolismo , Transducción de Señal
20.
Oncotarget ; 7(5): 5521-37, 2016 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-26575168

RESUMEN

PEL is a B-cell non-Hodgkin lymphoma, occurring predominantly as a lymphomatous effusion in body cavities, characterized by aggressive clinical course, with no standard therapy. Based on previous reports that PEL cells display a Warburg phenotype, we hypothesized that the highly hypoxic environment in which they grow in vivo makes them more reliant on glycolysis, and more vulnerable to drugs targeting this pathway. We established here that indeed PEL cells in hypoxia are more sensitive to glycolysis inhibition. Furthermore, since PI3K/Akt/mTOR has been proposed as a drug target in PEL, we ascertained that pathway-specific inhibitors, namely the dual PI3K and mTOR inhibitor, PF-04691502, and the Akt inhibitor, Akti 1/2, display improved cytotoxicity to PEL cells in hypoxic conditions. Unexpectedly, we found that these drugs reduce lactate production/extracellular acidification rate, and, in combination with the glycolysis inhibitor 2-deoxyglucose (2-DG), they shift PEL cells metabolism from aerobic glycolysis towards oxidative respiration. Moreover, the associations possess strong synergistic cytotoxicity towards PEL cells, and thus may reduce adverse reaction in vivo, while displaying very low toxicity to normal lymphocytes. Finally, we showed that the association of 2-DG and PF-04691502 maintains its cytotoxic and proapoptotic effect also in PEL cells co-cultured with human primary mesothelial cells, a condition known to mimic the in vivo environment and to exert a protective and pro-survival action. All together, these results provide a compelling rationale for the clinical development of new therapies for the treatment of PEL, based on combined targeting of glycolytic metabolism and constitutively activated signaling pathways.


Asunto(s)
Glucólisis/efectos de los fármacos , Linfoma de Efusión Primaria/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Apoptosis/efectos de los fármacos , Western Blotting , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Técnicas de Cocultivo , Desoxiglucosa/farmacología , Epitelio/efectos de los fármacos , Epitelio/metabolismo , Citometría de Flujo , Humanos , Linfoma de Efusión Primaria/tratamiento farmacológico , Linfoma de Efusión Primaria/patología , Fenotipo , Fosfatidilinositol 3-Quinasas/metabolismo , Análisis por Matrices de Proteínas , Proteínas Proto-Oncogénicas c-akt/metabolismo , Piridonas/farmacología , Pirimidinas/farmacología , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...