Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Curr Alzheimer Res ; 18(10): 772-786, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34879801

RESUMEN

The Amyloid Precursor Protein (APP) is principally known and studied for its involvement in Alzheimer's disease as the source of the amyloid ß peptide; however, its physiological actions within the nervous system are also important as it is involved in a range of neuronal activities, including neurogenesis, synaptic plasticity, neurite outgrowth, and neuroprotection. Of the different neuronal functions that APP can affect, some may be relevant to APP's role in Alzheimer's disease, while others can be primarily related to its physiological roles. This review will focus on APP's neuritogenic actions and surmise the key molecular mechanisms, as well as the structural and signaling requirements, which form the basis for APP's neuritogenic effects. Deciphering the normal function(s) of APP is valuable to properly understanding its role in health as well as Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Precursor de Proteína beta-Amiloide , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Humanos , Neurogénesis , Neuronas/metabolismo
3.
Cell Mol Life Sci ; 78(19-20): 6605-6630, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34476545

RESUMEN

Motor neurone disease (MND) is a neurodegenerative disorder characterised by progressive destruction of motor neurons, muscle paralysis and death. The amyloid precursor protein (APP) is highly expressed in the central nervous system and has been shown to modulate disease outcomes in MND. APP is part of a gene family that includes the amyloid precursor-like protein 1 (APLP1) and 2 (APLP2) genes. In the present study, we investigated the role of APLP2 in MND through the examination of human spinal cord tissue and by crossing APLP2 knockout mice with the superoxide dismutase 1 (SOD1-G37R) transgenic mouse model of MND. We found the expression of APLP2 is elevated in the spinal cord from human cases of MND and that this feature of the human disease is reproduced in SOD1-G37R mice at the End-stage of their MND-like phenotype progression. APLP2 deletion in SOD1-G37R mice significantly delayed disease progression and increased the survival of female SOD1-G37R mice. Molecular and biochemical analysis showed female SOD1-G37R:APLP2-/- mice displayed improved innervation of the neuromuscular junction, ameliorated atrophy of muscle fibres with increased APP protein expression levels in the gastrocnemius muscle. These results indicate a sex-dependent role for APLP2 in mutant SOD1-mediated MND and further support the APP family as a potential target for further investigation into the cause and regulation of MND.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Enfermedad de la Neurona Motora/metabolismo , Superóxido Dismutasa-1/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Sistema Nervioso Central/metabolismo , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Neuronas Motoras/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Unión Neuromuscular/metabolismo , Fenotipo , Médula Espinal/metabolismo
4.
J Bone Miner Res ; 36(11): 2106-2115, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34289172

RESUMEN

Cognitive decline and osteoporosis often coexist and some evidence suggests a causal link. However, there are no data on the longitudinal relationship between cognitive decline, bone loss and fracture risk, independent of aging. This study aimed to determine the association between: (i) cognitive decline and bone loss; and (ii) clinically significant cognitive decline (≥3 points) on Mini Mental State Examination (MMSE) over the first 5 years and subsequent fracture risk over the following 10 years. A total of 1741 women and 620 men aged ≥65 years from the population-based Canadian Multicentre Osteoporosis Study were followed from 1997 to 2013. Association between cognitive decline and (i) bone loss was estimated using mixed-effects models; and (ii) fracture risk was estimated using adjusted Cox models. Over 95% of participants had normal cognition at baseline (MMSE ≥ 24). The annual % change in MMSE was similar for both genders (women -0.33, interquartile range [IQR] -0.70 to +0.00; and men -0.34, IQR: -0.99 to 0.01). After multivariable adjustment, cognitive decline was associated with bone loss in women (6.5%; 95% confidence interval [CI], 3.2% to 9.9% for each percent decline in MMSE from baseline) but not men. Approximately 13% of participants experienced significant cognitive decline by year 5. In women, fracture risk was increased significantly (multivariable hazard ratio [HR], 1.61; 95% CI, 1.11 to 2.34). There were too few men to analyze. There was a significant association between cognitive decline and both bone loss and fracture risk, independent of aging, in women. Further studies are needed to determine mechanisms that link these common conditions. © 2021 American Society for Bone and Mineral Research (ASBMR).


Asunto(s)
Disfunción Cognitiva , Osteoporosis , Densidad Ósea , Canadá/epidemiología , Disfunción Cognitiva/complicaciones , Disfunción Cognitiva/epidemiología , Femenino , Humanos , Masculino , Osteoporosis/complicaciones , Osteoporosis/epidemiología , Estudios Prospectivos , Factores de Riesgo
5.
Calcif Tissue Int ; 108(5): 610-621, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33398413

RESUMEN

Neck of femur (NOF) fracture is a prevalent fracture type amongst the ageing and osteoporotic populations, commonly requiring total hip replacement (THR) surgery. Increased fracture risk has also been associated with Alzheimer's disease (AD) in the aged. Here, we sought to identify possible relationships between the pathologies of osteoporosis and dementia by analysing bone expression of neurotropic or dementia-related genes in patients undergoing THR surgery for NOF fracture. Femoral bone samples from 66 NOF patients were examined for expression of the neurotropic genes amyloid precursor protein (APP), APP-like protein-2 (APLP2), Beta-Secretase Cleaving Enzyme-1 (BACE1) and nerve growth factor (NGF). Relationships were examined between the expression of these and of bone regulatory genes, systemic factors and bone structural parameters ascertained from plain radiographs. We found strong relative levels of expression and positive correlations between APP, APLP2, BACE1 and NGF levels in NOF bone. Significant correlations were found between APP, APLP2, BACE1 mRNA levels and bone remodelling genes TRAP, RANKL, and the RANKL:OPG mRNA ratio, indicative of potential functional relationships at the time of fracture. Analysis of the whole cohort, as well as non-dementia (n = 53) and dementia (n = 13) subgroups, revealed structural relationships between APP and APLP2 mRNA expression and lateral femoral cortical thickness. These findings suggest that osteoporosis and AD may share common molecular pathways of disease progression, perhaps explaining the common risk factors associated with these diseases. The observation of a potential pathologic role for AD-related genes in bone may also provide alternative treatment strategies for osteoporosis and fracture prevention.


Asunto(s)
Enfermedad de Alzheimer , Fracturas del Cuello Femoral , Anciano , Enfermedad de Alzheimer/genética , Secretasas de la Proteína Precursora del Amiloide/genética , Ácido Aspártico Endopeptidasas , Remodelación Ósea/genética , Hueso Cortical , Fracturas del Cuello Femoral/genética , Humanos
6.
Biochem J ; 477(6): 1109-1122, 2020 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-32108853

RESUMEN

The toxicity of accumulated α-synuclein plays a key role in the neurodegeneration of Parkinson's disease (PD). This study has demonstrated that iron in varying concentrations (up to 400 µM) causes an increase in α-synuclein content in SH-SY5Y cells associated with mitochondrial depolarization, decreased cellular ATP content and loss of cell viability during incubation up to 96 h. Knocking-down α-synuclein expression prevents cytotoxic actions of iron, which can also be prevented by cyclosporine A (a blocker of mitochondrial permeability transition pore). These results indicate that iron cytotoxicity is mediated by α-synuclein acting on mitochondria. Likewise siRNA mediated knock-down of Parkin causes an accumulation of α-synuclein accompanied by mitochondrial dysfunction and cell death during 48 h incubation under basal conditions, but these changes are not further aggravated by co-incubation with iron (400 µM). We have also analyzed mitochondrial dysfunction and cell viability in SH-SY5Y cells under double knock-down (α-synuclein and Parkin concurrently) conditions during incubation for 48 h with or without iron. Our results tend to suggest that iron inactivates Parkin in SH-SY5Y cells and thereby inhibits the proteasomal degradation of α-synuclein, and the accumulated α-synuclein causes mitochondrial dysfunction and cell death. These results have implications in the pathogenesis of sporadic PD and also familial type with Parkin mutations.


Asunto(s)
Hierro/toxicidad , Enfermedad de Parkinson/metabolismo , Dominios y Motivos de Interacción de Proteínas/fisiología , Ubiquitina-Proteína Ligasas/metabolismo , alfa-Sinucleína/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Relación Dosis-Respuesta a Droga , Humanos , Dominios y Motivos de Interacción de Proteínas/efectos de los fármacos
7.
J Neurotrauma ; 37(5): 706-723, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-32027210

RESUMEN

Traumatic brain injury (TBI) is a major health problem causing disability and death worldwide. There is no effective treatment, due in part to the complexity of the injury pathology and factors affecting its outcome. The extent of brain injury depends on the type of insult, age, sex, lifestyle, genetic risk factors, socioeconomic status, other co-injuries, and underlying health problems. This review discusses the genes that have been directly tested in TBI models, and whether their effects are known to be sex-dependent. Sex differences can affect the incidence, symptom onset, pathology, and clinical outcomes following injury. Adult males are more susceptible at the acute phase and females show greater injury in the chronic phase. TBI is not restricted to a single sex; despite variations in the degree of symptom onset and severity, it is important to consider both female and male animals in TBI pre-clinical research studies.


Asunto(s)
Lesiones Traumáticas del Encéfalo/genética , Caracteres Sexuales , Animales , Femenino , Masculino , Modelos Animales , Factores Sexuales , Factores Socioeconómicos
8.
Anal Bioanal Chem ; 412(8): 1879-1892, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32030493

RESUMEN

Red blood cells (RBC) are the most common cell type found in blood. They might serve as reservoir for biomarker research as they are anuclear and lack the ability to synthesize proteins. Not many biomarker assays, however, have been conducted on RBC because of their large dynamic range of proteins, high abundance of lipids, and hemoglobin interferences. Here, we developed a semiquantitative mass spectrometry-based assay that targeted 144 proteins and compared the efficiency of urea, sodium deoxycholate, acetonitrile, and HemoVoid™ in their extraction of the RBC proteome. Our results indicate that protein extraction with HemoVoid™ led to hemoglobin reduction and increased detection of low abundance proteins. Although hemoglobin interference after deoxycholate and urea extraction was high, there were adequate amounts of low abundance proteins for quantitation. Extraction with acetonitrile led to an overall decrease in protein abundances probably as a result of precipitation. Overall, the best compromise in sensitivity and sample processing time was achieved with the urea-trypsin digestion protocol. This provided the basis for large-scale evaluations of protein targets as potential blood-based biomarkers. As a proof of concept, we applied this assay to determine that alpha-synuclein, a prominent marker in Parkinson's disease, has an average concentration of approximately 40 µg mL-1 in RBC. This is important to know as the concentration of alpha-synuclein in plasma, typically in the picogram per milliliter range, might be partially derived from lysed RBC. Utilization of this assay will prove useful for future biomarker studies and provide a more complete analytical toolbox for the measurement of blood-derived proteins. Graphical abstract.


Asunto(s)
Proteínas Sanguíneas/aislamiento & purificación , Eritrocitos/metabolismo , Espectrometría de Masas/métodos , Biomarcadores/sangre , Cromatografía Liquida/métodos , Congelación , Ensayos Analíticos de Alto Rendimiento , Humanos , alfa-Sinucleína/sangre
9.
Neurotox Res ; 35(4): 898-907, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30806984

RESUMEN

The cytotoxicity of dopamine on cultured cells of neural origin has been used as a tool to explore the mechanisms of dopaminergic neurodegeneration in Parkinson's disease. In the current study, we have shown that dopamine induces a dose-dependent (10-40 µM) and time-dependent (up to 96 h) loss of cell viability associated with mitochondrial dysfunction and increased intra-cellular accumulation of α-synuclein in cultured SH-SY5Y cells. Dopamine-induced mitochondrial dysfunction and the loss of cell viability under our experimental conditions could be prevented by cyclosporine, a blocker of mitochondrial permeability transition pore, as well as the antioxidant N-acetylcysteine. Interestingly, the dopamine effects on cell viability and mitochondrial functions were significantly prevented by knocking down α-synuclein expression by specific siRNA. Our results suggest that dopamine cytotoxicity is mediated by α-synuclein acting on the mitochondria and impairing its bioenergetic functions.


Asunto(s)
Supervivencia Celular/efectos de los fármacos , Dopamina/toxicidad , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Línea Celular Tumoral , Ciclosporina , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos
10.
FASEB J ; 33(4): 5076-5081, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30608876

RESUMEN

The amyloid precursor-like protein 2 (APLP2) molecule is a type I transmembrane protein that is crucial for survival, cell-cell adhesion, neuronal development, myelination, cancer metastasis, modulation of metal, and glucose and insulin homeostasis. Moreover, the importance of the amyloid precursor protein (APP) family in biology and disease is very well known because of its central role in Alzheimer disease. In this study, we determined the crystal structure of the independently folded E2 domain of APLP2 and compared that with its paralogues APP and APLP2, demonstrating high overall structural similarities. The crystal structure of APLP2 E2 was solved as an antiparallel dimer, and analysis of the protein interfaces revealed a distinct mode of dimerization that differs from the previously reported dimerization of either APP or APLP1. Analysis of the APLP2 E2 metal binding sites suggested it binds zinc and copper in a similar manner to APP and APLP1. The structure of this key protein might suggest a relationship between the distinct mode of dimerization and its biologic functions.-Roisman, L. C., Han, S., Chuei, M. J., Connor, A. R., Cappai, R. The crystal structure of amyloid precursor-like protein 2 E2 domain completes the amyloid precursor protein family.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Glucosa/metabolismo , Insulina/metabolismo , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Precursor de Proteína beta-Amiloide/química , Sitios de Unión , Dicroismo Circular , Cristalografía por Rayos X , Homeostasis , Humanos , Relación Estructura-Actividad
11.
Mol Neurobiol ; 56(1): 13-28, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29675574

RESUMEN

The amyloid precursor protein (APP) undergoes extensive metabolism, and its transport and proteolytic processing can be modulated by its ability to form a homodimer. We have investigated the functional consequences of stabilised APP dimer expression in cells by studying the engineered dimerisation of the APPL17C (residue 17 in Aß sequence) construct, which is associated with a 30% increase in APP dimer expression, on APP's neurite outgrowth promoting activity. Overexpression of APPL17C in SH-SY5Y cells decreased neurite outgrowth upon retinoic acid differentiation as compared to overexpressing APPWT cells. The APPL17C phenotype was rescued by replacing the APPL17C media with conditioned media from APPWT cells, indicating that the APPL17C mutant is impairing the secretion of a neuritogenic promoting factor. APPL17C had altered transport and was localised in the endoplasmic reticulum. Defining the molecular basis of the APPL17C phenotype showed that RhoA GTPase activity, a negative regulator of neurite outgrowth, was increased in APPL17C cells. RhoA activity was decreased after APPWT conditioned media rescue. Moreover, treatment with the RhoA inhibitor, Y27632, restored a wild-type morphology to the APPL17C cells. Small RNAseq analysis of APPL17C and APPWT cells identified several differentially expressed miRNAs relating to neurite outgrowth. Of these, miR-34a showed the greatest decrease in expression. Lentiviral-mediated overexpression of miR-34a rescued neurite outgrowth in APPL17C cells to APPWT levels and changed RhoA activation. This study has identified a novel link between APP dimerisation and its neuritogenic activity which is mediated by miR-34a expression.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Proyección Neuronal , Multimerización de Proteína , Secuencia de Aminoácidos , Precursor de Proteína beta-Amiloide/química , Biomarcadores/metabolismo , Línea Celular Tumoral , Forma de la Célula/efectos de los fármacos , Medios de Cultivo Condicionados/farmacología , Regulación hacia Abajo/genética , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Células HEK293 , Humanos , Lentivirus/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Modelos Biológicos , Mutación/genética , Proyección Neuronal/efectos de los fármacos , Fenotipo , Tubulina (Proteína)/metabolismo , Proteína de Unión al GTP rhoA/metabolismo
12.
Neurochem Res ; 44(6): 1356-1366, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30362021

RESUMEN

The amyloid precursor protein (APP) is a member of a conserved gene family that includes the amyloid precursor-like proteins 1 (APLP1) and 2 (APLP2). APP and APLP2 share a high degree of similarity, and have overlapping patterns of spatial and temporal expression in the central and peripheral tissues, in particular at the neuromuscular junction. APP-family knockout (KO) studies have helped elucidate aspects of function and functional redundancy amongst the APP-family members. In the present study, we investigated motor performance of APLP2-KO mice and the effect sex differences and age-related changes have on motor performance. APLP2-KO and WT (on C57Bl6 background) littermates control mice from 8 (young adulthood) to 48 weeks (middle age) were investigated. Analysis of motor neuron and muscle morphology showed APLP2-KO females but not males, had less age-related motor function impairments. We observed age and sex differences in both motor neuron number and muscle fiber size distribution for APLP2-KO mice compared to WT (C57Bl6). These alterations in the motor neuron number and muscle fiber distribution pattern may explain why female APLP2-KO mice have far better motor function behaviour during ageing.


Asunto(s)
Envejecimiento/fisiología , Precursor de Proteína beta-Amiloide/deficiencia , Actividad Motora/fisiología , Factores de Edad , Envejecimiento/patología , Precursor de Proteína beta-Amiloide/genética , Animales , Femenino , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas Motoras/patología , Músculo Esquelético/patología , Factores Sexuales , Médula Espinal/patología
13.
ACS Chem Neurosci ; 10(1): 120-131, 2019 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-30362702

RESUMEN

Neurotoxicity is one major unwanted side-effects associated with polymyxin (i.e., colistin and polymyxin B) therapy. Clinically, colistin neurotoxicity is characterized by neurological symptoms including dizziness, visual disturbances, vertigo, confusion, hallucinations, seizures, ataxia, and facial and peripheral paresthesias. Pathologically, colistin-induced neurotoxicity is characterized by cell injury and death in neuronal cell. This Review covers our current understanding of polymyxin-induced neurotoxicity, its underlying mechanisms, and the discovery of novel neuroprotective agents to limit this neurotoxicity. In recent years, an increasing body of literature supports the notion that polymyxin-induced nerve damage is largely related to oxidative stress and mitochondrial dysfunction. P53, PI3K/Akt, and MAPK pathways are also involved in colistin-induced neuronal cell death. The activation of the redox homeostasis pathways such as Nrf2/HO-1 and autophagy have also been shown to play protective roles against polymyxin-induced neurotoxicity. These pathways have been demonstrated to be upregulated by neuroprotective agents including curcumin, rapamycin and minocycline. Further research is needed toward the development of novel polymyxin formulations in combination with neuroprotective agents to ameliorate this unwanted adverse effect during polymyxins therapy in patients.


Asunto(s)
Quimioprevención/métodos , Síndromes de Neurotoxicidad/prevención & control , Estrés Oxidativo/fisiología , Polimixinas/toxicidad , Animales , Quimioprevención/tendencias , Humanos , Síndromes de Neurotoxicidad/metabolismo , Estrés Oxidativo/efectos de los fármacos , Polimixinas/metabolismo , Especies Reactivas de Oxígeno/antagonistas & inhibidores , Especies Reactivas de Oxígeno/metabolismo
14.
Metallomics ; 11(1): 128-140, 2019 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-30465671

RESUMEN

Abnormal protein structure and function have been implicated as the toxic species in many diseases including neurodegenerative diseases, such as Parkinson's. One key pathological hallmark in Parkinson's disease is the formation of Lewy bodies, of which alpha-synuclein is the major component. These Lewy bodies are formed by the aggregation and oligomerization of alpha-synuclein. The oligomeric form of the protein is suspected to be the main contributor to the neurotoxicity seen in the disease. The formation of toxic oligomers has been shown to occur through reactions with lipids, dopamine, hydrogen peroxide as well as metals. The interplay between metals and alpha-synuclein has also been proposed to cause oxidative stress, which promotes the formation of protein aggregates. Most studies investigating the relationship of Cu, Fe and Zn with alpha-synuclein have relied on the use of recombinant protein and there is little evidence that the interaction between metals and alpha-synuclein are physiologically relevant. To address this gap in our knowledge we have characterized the metal content and metal binding capacity of alpha-synuclein purified from human erythrocytes and brain tissue. In addition, we examined the ability of dityrosine cross-linked alpha-synuclein oligomers to bind Cu, Fe and Zn. Using size exclusion chromatography-inductively coupled plasma-mass spectrometry we demonstrated that native human alpha-synuclein, recombinant familial mutants and oligomers do not bind to significant amounts of metal even when they are added to the protein in excess.


Asunto(s)
Cobre/metabolismo , Hierro/metabolismo , Zinc/metabolismo , alfa-Sinucleína/metabolismo , Sitios de Unión , Encéfalo/metabolismo , Química Encefálica , Cobre/análisis , Eritrocitos/química , Eritrocitos/metabolismo , Humanos , Hierro/análisis , Espectrometría de Masas/métodos , Unión Proteica , Multimerización de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Zinc/análisis , alfa-Sinucleína/química
15.
Glia ; 67(3): 525-538, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30506868

RESUMEN

The identification of factors that regulate myelination provides important insight into the molecular mechanisms that coordinate nervous system development and myelin regeneration after injury. In this study, we investigated the role of amyloid precursor protein (APP) and its paralogue amyloid precursor-like protein 2 (APLP2) in myelination using APP and APLP2 knockout (KO) mice. Given that BACE1 regulates myelination and myelin sheath thickness in both the peripheral and central nervous systems, we sought to determine if APP and APLP2, as alternate BACE1 substrates, also modulate myelination, and therefore provide a better understanding of the events regulating axonal myelination. In the peripheral nervous system, we identified that adult, but not juvenile KO mice, have lower densities of myelinated axons in their sciatic nerves while in the central nervous system, axons within both the optic nerves and corpus callosum of both KO mice were significantly hypomyelinated compared to wild-type (WT) controls. Biochemical analysis demonstrated significant increases in BACE1 and myelin oligodendrocyte glycoprotein and decreased NRG1 and proteolipid protein levels in both KO brain tissue. The acute cuprizone model of demyelination/remyelination revealed that whereas axons in the corpus callosum of WT and APLP2-KO mice underwent similar degrees of demyelination and subsequent remyelination, the myelinated callosal axons in APP-KO mice were less susceptible to cuprizone-induced demyelination and showed a failure in remyelination after cuprizone withdrawal. These data identified APP and APLP2 as modulators of normal myelination and demyelination/remyelination conditions. Deletion of APP and APLP2 identifies novel interplays between the BACE1 substrates in the regulation of myelination.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Enfermedades Desmielinizantes/metabolismo , Vaina de Mielina/metabolismo , Remielinización/fisiología , Secretasas de la Proteína Precursora del Amiloide/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animales , Ácido Aspártico Endopeptidasas/genética , Ácido Aspártico Endopeptidasas/metabolismo , Axones/metabolismo , Cuerpo Calloso/metabolismo , Cuprizona , Enfermedades Desmielinizantes/inducido químicamente , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Noqueados , Oligodendroglía/metabolismo , Nervio Óptico/metabolismo
16.
J Mol Biol ; 430(20): 3784-3801, 2018 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-30096347

RESUMEN

Hydrophobins are amphiphilic proteins secreted by filamentous fungi in a soluble form, which can self-assemble at hydrophilic/hydrophobic or water/air interfaces to form amphiphilic layers that have multiple biological roles. We have investigated the conformational changes that occur upon self-assembly of six hydrophobins that form functional amyloid fibrils with a rodlet morphology. These hydrophobins are present in the cell wall of spores from different fungal species. From available structures and NMR chemical shifts, we established the secondary structures of the monomeric forms of these proteins and monitored their conformational changes upon amyloid rodlet formation or thermal transitions using synchrotron radiation circular dichroism and Fourier-transform infrared spectroscopy (FT-IR). Thermal transitions were followed by synchrotron radiation circular dichroism in quartz cells that allowed for microbubbles and hence water/air interfaces to form and showed irreversible conformations that differed from the rodlet state for most of the proteins. In contrast, thermal transitions on hermetic calcium fluoride cells showed reversible conformational changes. Heating hydrophobin solutions with a water/air interface on a silicon crystal surface in FT-IR experiments resulted in a gain in ß-sheet content typical of amyloid fibrils for all except one protein. Rodlet formation was further confirmed by electron microscopy. FT-IR spectra of pre-formed hydrophobin rodlet preparations also showed a gain in ß-sheet characteristic of the amyloid cross-ß structure. Our results indicate that hydrophobins are capable of significant conformational plasticity and the nature of the assemblies formed by these surface-active proteins is highly dependent on the interface at which self-assembly takes place.


Asunto(s)
Amiloide/química , Amiloide/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Modelos Moleculares , Conformación Proteica , Amiloide/ultraestructura , Calor , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Estructura Secundaria de Proteína , Análisis Espectral , Relación Estructura-Actividad
17.
Biochemistry ; 57(28): 4165-4176, 2018 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-29894164

RESUMEN

A manifestation of Alzheimer's disease (AD) is the aggregation in the brain of amyloid ß (Aß) peptides derived from the amyloid precursor protein (APP). APP has been linked to modulation of normal copper homeostasis, while dysregulation of Aß production and clearance has been associated with disruption of copper balance. However, quantitative copper chemistry on APP is lacking, in contrast to the plethora of copper chemistry available for Aß peptides. The soluble extracellular protein domain sAPPα (molar mass including post-translational modifications of ∼100 kDa) has now been isolated in good yield and high quality. It is known to feature several copper binding sites with different affinities. However, under Cu-limiting conditions, it binds either Cu(I) or Cu(II) with picomolar affinity at a single site (labeled M1) that is located within the APP E2 subdomain. M1 in E2 was identified previously by X-ray crystallography as a Cu(II) site that features four histidine side chains (H313, H386, H432, and H436) as ligands. The presence of CuII(His)4 is confirmed in solution at pH ≤7.4, while Cu(I) binding involves either the same ligands or a subset. The binding affinities are pH-dependent, and the picomolar affinities for both Cu(I) and Cu(II) at pH 7.4 indicate that either oxidation state may be accessible under physiological conditions. Redox activity was observed in the presence of an electron donor (ascorbate) and acceptor (dioxygen). A critical analysis of the potential biological implications of these findings is presented.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Cobre/metabolismo , Precursor de Proteína beta-Amiloide/química , Sitios de Unión , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Unión Proteica , Dominios Proteicos , Albúmina Sérica Humana/química , Albúmina Sérica Humana/metabolismo
18.
PLoS One ; 13(1): e0190449, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29320530

RESUMEN

Following traumatic brain injury (TBI) neurological damage is ongoing through a complex cascade of primary and secondary injury events in the ensuing minutes, days and weeks. The delayed nature of secondary injury provides a valuable window of opportunity to limit the consequences with a timely treatment. Recently, the amyloid precursor protein (APP) and its derivative APP96-110 have shown encouraging neuroprotective activity following TBI following an intracerebroventricular administration. Nevertheless, its broader clinical utility would be enhanced by an intravenous (IV) administration. This study assessed the efficacy of IV APP96-110, where a dose-response for a single dose of 0.005mg/kg- 0.5mg/kg APP96-110 at either 30 minutes or 5 hours following moderate-severe diffuse impact-acceleration injury was performed. Male Sprague-Dawley rats were assessed daily for 3 or 7 days on the rotarod to examine motor outcome, with a separate cohort of animals utilised for immunohistochemistry analysis 3 days post-TBI to assess axonal injury and neuroinflammation. Animals treated with 0.05mg/kg or 0.5mg/kg APP96-110 after 30 minutes demonstrated significant improvements in motor outcome. This was accompanied by a reduction in axonal injury and neuroinflammation in the corpus callosum at 3 days post-TBI, whereas 0.005mg/kg had no effect. In contrast, treatment with 0.005m/kg or 0.5mg/kg APP96-110 at 5 hours post-TBI demonstrated significant improvements in motor outcome over 3 days, which was accompanied by a reduction in axonal injury in the corpus callosum. This demonstrates that APP96-110 remains efficacious for up to 5 hours post-TBI when administered IV, and supports its development as a novel therapeutic compound following TBI.


Asunto(s)
Precursor de Proteína beta-Amiloide/administración & dosificación , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Administración Intravenosa , Animales , Masculino , Ratas , Ratas Sprague-Dawley
19.
Pharmacol Ther ; 181: 85-90, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28750947

RESUMEN

Central nervous system (CNS) infections caused by multi-drug resistant (MDR) Gram-negative bacteria present a major health and economic burden worldwide. Due to the nearly empty antibiotic discovery pipeline, polymyxins (i.e. polymyxin B and colistin) are used as the last-line therapy against Gram-negative 'superbugs' when all other treatment modalities have failed. The treatment of CNS infections due to multi-drug resistant Gram-negative bacteria is problematic and associated with high mortality rates. Colistin shows significant efficacy for the treatment of CNS infections caused by MDR Gram-negative bacteria that are resistant to all other antibiotics. In particular, MDR Acinetobacter baumannii, Pseudomonas aeruginosa and Klebsiella pneumoniae which are resistant to expanded-spectrum and fourth-generation cephalosporins, carbapenems and aminoglycosides, represent a major therapeutic challenge, although they can be treated with colistin or polymyxin B. However, current dosing recommendations of intrathecal/intraventricular polymyxins are largely empirical, as we have little understanding of the pharmacokinetics/pharmacodynamics and, importantly, we are only starting to understand the mechanisms of potential neurotoxicity. This review covers the current knowledge-base on the mechanisms of disposition and potential neurotoxicity of polymyxins as well as the combined use of neuroprotective agents to alleviate polymyxins-related neurotoxicity. Progress in this field will provide the urgently needed pharmacological information for safer and more efficacious intrathecal/intraventricular polymyxin therapy against life-threatening CNS infections caused by Gram-negative 'superbugs'.


Asunto(s)
Infecciones del Sistema Nervioso Central/tratamiento farmacológico , Colistina/efectos adversos , Colistina/uso terapéutico , Polimixina B/efectos adversos , Polimixina B/uso terapéutico , Colistina/administración & dosificación , Colistina/farmacocinética , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Infecciones por Bacterias Gramnegativas/tratamiento farmacológico , Humanos , Inyecciones Intraventriculares , Inyecciones Espinales , Modelos Biológicos , Fármacos Neuroprotectores/uso terapéutico , Polimixina B/administración & dosificación , Polimixina B/farmacocinética
20.
Mol Neurobiol ; 55(1): 421-434, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-27957686

RESUMEN

Neurotoxicity is an unwanted side-effect seen in patients receiving therapy with the "last-line" polymyxin antibiotics. This is the first study to show that colistin-induced neurotoxicity in neuroblastoma-2a (N2a) cells gives rise to an inflammatory response involving the IL-1ß/p-IκB-α/NF-κB pathway. Pretreatment with curcumin at 5, 10, and 20 µM for 2 h prior to colistin (200 µM) exposure for 24 h, produced an anti-inflammatory effect by significantly down-regulating the expression of the pro-inflammatory mediators cyclooxygenase-2 (COX-2), phosphorylation of the inhibitor of nuclear factor-kappa B (NF-κB) (p-IκB)-α, and concomitantly NF-κB levels. Moreover, curcumin significantly decreased intracellular reactive oxygen species (ROS) production and increased the activities of the anti-ROS enzymes superoxide dismutase, catalase, and the intracellular levels of glutathione. Curcumin pretreatment also protected the cells from colistin-induced mitochondrial dysfunction, caspase activation, and subsequent apoptosis. Overall, our findings demonstrate for the first time, a potential role for curcumin for treating polymyxin-induced neurotoxicity through the modulation of NF-κB signaling and its potent anti-oxidative and anti-apoptotic effects.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Apoptosis/efectos de los fármacos , Colistina/toxicidad , Curcumina/farmacología , Estrés Oxidativo/efectos de los fármacos , Animales , Apoptosis/fisiología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Colistina/antagonistas & inhibidores , Ratones , Estrés Oxidativo/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...