Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
Circ Genom Precis Med ; 17(3): e004448, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38847081

RESUMEN

BACKGROUND: Hypertrophic cardiomyopathy (HCM) is defined clinically by pathological left ventricular hypertrophy. We have previously developed a plasma proteomics biomarker panel that correlates with clinical markers of disease severity and sudden cardiac death risk in adult patients with HCM. The aim of this study was to investigate the utility of adult biomarkers and perform new discoveries in proteomics for childhood-onset HCM. METHODS: Fifty-nine protein biomarkers were identified from an exploratory plasma proteomics screen in children with HCM and augmented into our existing multiplexed targeted liquid chromatography-tandem/mass spectrometry-based assay. The association of these biomarkers with clinical phenotypes and outcomes was prospectively tested in plasma collected from 148 children with HCM and 50 healthy controls. Machine learning techniques were used to develop novel pediatric plasma proteomic biomarker panels. RESULTS: Four previously identified adult HCM markers (aldolase fructose-bisphosphate A, complement C3a, talin-1, and thrombospondin 1) and 3 new markers (glycogen phosphorylase B, lipoprotein a and profilin 1) were elevated in pediatric HCM. Using supervised machine learning applied to training (n=137) and validation cohorts (n=61), this 7-biomarker panel differentiated HCM from healthy controls with an area under the curve of 1.0 in the training data set (sensitivity 100% [95% CI, 95-100]; specificity 100% [95% CI, 96-100]) and 0.82 in the validation data set (sensitivity 75% [95% CI, 59-86]; specificity 88% [95% CI, 75-94]). Reduced circulating levels of 4 other peptides (apolipoprotein L1, complement 5b, immunoglobulin heavy constant epsilon, and serum amyloid A4) found in children with high sudden cardiac death risk provided complete separation from the low and intermediate risk groups and predicted mortality and adverse arrhythmic outcomes (hazard ratio, 2.04 [95% CI, 1.0-4.2]; P=0.044). CONCLUSIONS: In children, a 7-biomarker proteomics panel can distinguish HCM from controls with high sensitivity and specificity, and another 4-biomarker panel identifies those at high risk of adverse arrhythmic outcomes, including sudden cardiac death.


Asunto(s)
Biomarcadores , Cardiomiopatía Hipertrófica , Proteómica , Humanos , Cardiomiopatía Hipertrófica/sangre , Cardiomiopatía Hipertrófica/diagnóstico , Biomarcadores/sangre , Niño , Femenino , Masculino , Preescolar , Adolescente , Pronóstico , Proteómica/métodos , Lactante , Adulto
2.
Circ Genom Precis Med ; : e004580, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38910555

RESUMEN

Genetic hypertrophic cardiomyopathy (HCM) is classically caused by pathogenic/likely pathogenic variants in sarcomere genes (G+). Currently, HCM is diagnosed if there is unexplained left ventricular (LV) hypertrophy with LV wall thickness ≥15 mm in probands or ≥13 mm in at-risk relatives. Although LV hypertrophy is a key feature, this binary metric does not encompass the full constellation of phenotypic features, particularly in the subclinical stage of the disease. Subtle phenotypic manifestations can be identified in sarcomere variant carriers with normal LV wall thickness, before diagnosis with HCM (G+/LV hypertrophy-; subclinical HCM). We conducted a systematic review to summarize current knowledge about the phenotypic spectrum of subclinical HCM and factors influencing penetrance and expressivity. Although the mechanisms driving the development of LV hypertrophy are yet to be elucidated, activation of profibrotic pathways, impaired relaxation, abnormal Ca2+ signaling, altered myocardial energetics, and microvascular dysfunction have all been identified in subclinical HCM. Progression from subclinical to clinically overt HCM may be more likely if early phenotypic manifestations are present, including abnormal ECG, longer mitral valve leaflets, lower global E' velocities on Doppler echocardiography, and higher serum N-terminal propeptide of B-type natriuretic peptide. Longitudinal studies of variant carriers are critically needed to improve our understanding of penetrance, characterize the transition to disease, identify risk predictors of phenotypic evolution, and guide the development of novel treatment strategies aimed at influencing disease trajectory.

3.
Europace ; 26(4)2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38588067

RESUMEN

AIMS: Typical electrocardiogram (ECG) features of apical hypertrophic cardiomyopathy (ApHCM) include tall R waves and deep or giant T-wave inversion in the precordial leads, but these features are not always present. The ECG is used as the gatekeeper to cardiac imaging for diagnosis. We tested whether explainable advanced ECG (A-ECG) could accurately diagnose ApHCM. METHODS AND RESULTS: Advanced ECG analysis was performed on standard resting 12-lead ECGs in patients with ApHCM [n = 75 overt, n = 32 relative (<15 mm hypertrophy); a subgroup of which underwent cardiovascular magnetic resonance (n = 92)], and comparator subjects (n = 2449), including healthy volunteers (n = 1672), patients with coronary artery disease (n = 372), left ventricular electrical remodelling (n = 108), ischaemic (n = 114) or non-ischaemic cardiomyopathy (n = 57), and asymmetrical septal hypertrophy HCM (n = 126). Multivariable logistic regression identified four A-ECG measures that together discriminated ApHCM from other diseases with high accuracy [area under the receiver operating characteristic (AUC) curve (bootstrapped 95% confidence interval) 0.982 (0.965-0.993)]. Linear discriminant analysis also diagnosed ApHCM with high accuracy [AUC 0.989 (0.986-0.991)]. CONCLUSION: Explainable A-ECG has excellent diagnostic accuracy for ApHCM, even when the hypertrophy is relative, with A-ECG analysis providing incremental diagnostic value over imaging alone. The electrical (ECG) and anatomical (wall thickness) disease features do not completely align, suggesting that future diagnostic and management strategies may incorporate both features.


Asunto(s)
Cardiomiopatía Hipertrófica , Electrocardiografía , Humanos , Cardiomiopatía Hipertrófica/diagnóstico , Cardiomiopatía Hipertrófica/fisiopatología , Electrocardiografía/métodos , Masculino , Femenino , Persona de Mediana Edad , Anciano , Valor Predictivo de las Pruebas , Reproducibilidad de los Resultados , Adulto , Curva ROC , Modelos Logísticos , Estudios de Casos y Controles , Análisis Multivariante , Imagen por Resonancia Magnética , Área Bajo la Curva , Diagnóstico Diferencial , Remodelación Ventricular , Miocardiopatía Hipertrófica Apical
5.
BMC Cardiovasc Disord ; 24(1): 172, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38509472

RESUMEN

BACKGROUND: Although APOE ε4 allele carriage confers a risk for coronary artery disease, its persistence in humans might be explained by certain survival advantages (antagonistic pleiotropy). METHODS: Combining data from ~ 37,000 persons from three older age British cohorts (1946 National Survey of Health and Development [NSHD], Southall and Brent Revised [SABRE], and UK Biobank) and one younger age cohort (Avon Longitudinal Study of Parents and Children [ALSPAC]), we explored whether APOE ε4 carriage associates with beneficial or unfavorable left ventricular (LV) structural and functional metrics by echocardiography and cardiovascular magnetic resonance (CMR). RESULTS: Compared to the non-APOE ε4 group, APOE ε4 carriers had similar cardiac phenotypes in terms of LV ejection fraction, E/e', posterior wall and interventricular septal thickness, and LV mass. However, they had improved myocardial performance resulting in greater LV stroke volume generation per 1 mL of myocardium (higher myocardial contraction fraction). In NSHD (n = 1467) and SABRE (n = 1187), ε4 carriers had a 4% higher MCF (95% CI 1-7%, p = 0.016) using echocardiography. Using CMR data, in UK Biobank (n = 32,972), ε4 carriers had a 1% higher MCF 95% (CI 0-1%, p = 0.020) with a dose-response relationship based on the number of ε4 alleles. In addition, UK Biobank ε4 carriers also had more favorable radial and longitudinal strain rates compared to non APOE ε4 carriers. In ALSPAC (n = 1397), APOE ε4 carriers aged < 24 years had a 2% higher MCF (95% CI 0-5%, p = 0.059). CONCLUSIONS: By triangulating results in four independent cohorts, across imaging modalities (echocardiography and CMR), and in ~ 37,000 individuals, our results point towards an association between ε4 carriage and improved cardiac performance in terms of LV MCF. This potentially favorable cardiac phenotype adds to the growing number of reported survival advantages attributed to the pleiotropic effects APOE ε4 carriage that might collectively explain its persistence in human populations.


Asunto(s)
Apolipoproteína E4 , Enfermedad de la Arteria Coronaria , Adolescente , Anciano , Niño , Humanos , Alelos , Apolipoproteína E4/genética , Apolipoproteínas E/genética , Enfermedad de la Arteria Coronaria/genética , Genotipo , Estudios Longitudinales , Miocardio , Fenotipo
6.
J Am Coll Cardiol ; 83(11): 1042-1055, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38385929

RESUMEN

BACKGROUND: Ventricular arrhythmia in hypertrophic cardiomyopathy (HCM) relates to adverse structural change and genetic status. Cardiovascular magnetic resonance (CMR)-guided electrocardiographic imaging (ECGI) noninvasively maps cardiac structural and electrophysiological (EP) properties. OBJECTIVES: The purpose of this study was to establish whether in subclinical HCM (genotype [G]+ left ventricular hypertrophy [LVH]-), ECGI detects early EP abnormality, and in overt HCM, whether the EP substrate relates to genetic status (G+/G-LVH+) and structural phenotype. METHODS: This was a prospective 211-participant CMR-ECGI multicenter study of 70 G+LVH-, 104 LVH+ (51 G+/53 G-), and 37 healthy volunteers (HVs). Local activation time (AT), corrected repolarization time, corrected activation-recovery interval, spatial gradients (GAT/GRTc), and signal fractionation were derived from 1,000 epicardial sites per participant. Maximal wall thickness and scar burden were derived from CMR. A support vector machine was built to discriminate G+LVH- from HV and low-risk HCM from those with intermediate/high-risk score or nonsustained ventricular tachycardia. RESULTS: Compared with HV, subclinical HCM showed mean AT prolongation (P = 0.008) even with normal 12-lead electrocardiograms (ECGs) (P = 0.009), and repolarization was more spatially heterogenous (GRTc: P = 0.005) (23% had normal ECGs). Corrected activation-recovery interval was prolonged in overt vs subclinical HCM (P < 0.001). Mean AT was associated with maximal wall thickness; spatial conduction heterogeneity (GAT) and fractionation were associated with scar (all P < 0.05), and G+LVH+ had more fractionation than G-LVH+ (P = 0.002). The support vector machine discriminated subclinical HCM from HV (10-fold cross-validation accuracy 80% [95% CI: 73%-85%]) and identified patients at higher risk of sudden cardiac death (accuracy 82% [95% CI: 78%-86%]). CONCLUSIONS: In the absence of LVH or 12-lead ECG abnormalities, HCM sarcomere gene mutation carriers express an aberrant EP phenotype detected by ECGI. In overt HCM, abnormalities occur more severely with adverse structural change and positive genetic status.


Asunto(s)
Cardiomiopatía Hipertrófica , Cicatriz , Humanos , Estudios Prospectivos , Cicatriz/patología , Imagen por Resonancia Cinemagnética , Cardiomiopatía Hipertrófica/diagnóstico por imagen , Cardiomiopatía Hipertrófica/genética , Electrocardiografía , Hipertrofia Ventricular Izquierda/diagnóstico , Imagen por Resonancia Magnética
8.
BMC Neurol ; 24(1): 40, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38263061

RESUMEN

BACKGROUND: Although age is the biggest known risk factor for dementia, there remains uncertainty about other factors over the life course that contribute to a person's risk for cognitive decline later in life. Furthermore, the pathological processes leading to dementia are not fully understood. The main goals of Insight 46-a multi-phase longitudinal observational study-are to collect detailed cognitive, neurological, physical, cardiovascular, and sensory data; to combine those data with genetic and life-course information collected from the MRC National Survey of Health and Development (NSHD; 1946 British birth cohort); and thereby contribute to a better understanding of healthy ageing and dementia. METHODS/DESIGN: Phase 1 of Insight 46 (2015-2018) involved the recruitment of 502 members of the NSHD (median age = 70.7 years; 49% female) and has been described in detail by Lane and Parker et al. 2017. The present paper describes phase 2 (2018-2021) and phase 3 (2021-ongoing). Of the 502 phase 1 study members who were invited to a phase 2 research visit, 413 were willing to return for a clinic visit in London and 29 participated in a remote research assessment due to COVID-19 restrictions. Phase 3 aims to recruit 250 study members who previously participated in both phases 1 and 2 of Insight 46 (providing a third data time point) and 500 additional members of the NSHD who have not previously participated in Insight 46. DISCUSSION: The NSHD is the oldest and longest continuously running British birth cohort. Members of the NSHD are now at a critical point in their lives for us to investigate successful ageing and key age-related brain morbidities. Data collected from Insight 46 have the potential to greatly contribute to and impact the field of healthy ageing and dementia by combining unique life course data with longitudinal multiparametric clinical, imaging, and biomarker measurements. Further protocol enhancements are planned, including in-home sleep measurements and the engagement of participants through remote online cognitive testing. Data collected are and will continue to be made available to the scientific community.


Asunto(s)
Demencia , Anciano , Femenino , Humanos , Masculino , Envejecimiento , Atención Ambulatoria , Encéfalo , Estudios Observacionales como Asunto
10.
Circulation ; 149(2): 107-123, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-37929589

RESUMEN

BACKGROUND: Hypertrophic cardiomyopathy (HCM) is characterized by unexplained left ventricular hypertrophy and is classically caused by pathogenic or likely pathogenic variants (P/LP) in genes encoding sarcomere proteins. Not all subclinical variant carriers will manifest clinically overt disease because penetrance (proportion of sarcomere or sarcomere-related P/LP variant carriers who develop disease) is variable, age dependent, and not reliably predicted. METHODS: A systematic search of the literature was performed. We used random-effects generalized linear mixed model meta-analyses to contrast the cross-sectional prevalence and penetrance of sarcomere or sarcomere-related genes in 2 different contexts: clinically-based studies on patients and families with HCM versus population or community-based studies. Longitudinal family/clinical studies were additionally analyzed to investigate the rate of phenotypic conversion from subclinical to overt HCM during follow-up. RESULTS: In total, 455 full-text manuscripts and articles were assessed. In family/clinical studies, the prevalence of sarcomere variants in patients diagnosed with HCM was 34%. The penetrance across all genes in nonproband relatives carrying P/LP variants identified during cascade screening was 57% (95% CI, 52%-63%), and the mean age at HCM diagnosis was 38 years (95% CI, 36%-40%). Penetrance varied from ≈32% for MYL3 (myosin light chain 3) to ≈55% for MYBPC3 (myosin-binding protein C3), ≈60% for TNNT2 (troponin T2) and TNNI3 (troponin I3), and ≈65% for MYH7 (myosin heavy chain 7). Population-based genetic studies demonstrate that P/LP sarcomere variants are present in the background population but at a low prevalence of <1%. The penetrance of HCM in incidentally identified P/LP variant carriers was also substantially lower at ≈11%, ranging from 0% in Atherosclerosis Risk in Communities to 18% in UK Biobank. In longitudinal family studies, the pooled phenotypic conversion across all genes was 15% over an average of ≈8 years of follow-up, starting from a mean of ≈16 years of age. However, short-term gene-specific phenotypic conversion varied between ≈12% for MYBPC3 and ≈23% for MYH7. CONCLUSIONS: The penetrance of P/LP variants is highly variable and influenced by currently undefined and context-dependent genetic and environmental factors. Additional longitudinal studies are needed to improve our understanding of true lifetime penetrance in families and in the community and to identify drivers of the transition from subclinical to overt HCM.


Asunto(s)
Cardiomiopatía Hipertrófica , Humanos , Adulto , Penetrancia , Mutación , Estudios Transversales , Linaje , Cardiomiopatía Hipertrófica/diagnóstico , Cardiomiopatía Hipertrófica/epidemiología , Cardiomiopatía Hipertrófica/genética , Troponina T/genética
11.
MAGMA ; 37(2): 199-213, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38127221

RESUMEN

INTRODUCTION: Quality assurance (QA) of measurements derived from MRI can require complicated test phantoms. This work introduces a new QA concept using gradient and transmit RF recordings by a limited field camera (FC) to govern the previous Virtual Phantom (ViP) method. The purpose is to describe the first technical implementation of combined FC+ViP, and illustrate its performance in examples, including quantitative first-pass myocardial perfusion. MATERIALS AND METHODS: The new QA concept starts with a synthetic test object (STO) representing some arbitrary test input. Using recordings of the unmodified standard sequence by a gradient and RF waveform camera (FC), ViP calculates by Bloch simulation the continuous RF signal emitted by the STO during this sequence (hence FC+ViP). During nominally identical repetition of the sequence acquisition, ViP transmits the RF signal for scanner reception, reconstruction and any further parametric derivations by the unmodified standard scanner image reconstruction and analysis software. RESULTS: The scanner outputs were compared against the input STOs. CONCLUSION: First proof-of-principle was discussed and supported by correlation between scanner outputs and the input STO. The work makes no claim that its examples are valid QA methods. It concludes by proposing a new industrial standard for QA without the FC.


Asunto(s)
Imagen por Resonancia Magnética , Programas Informáticos , Imagen por Resonancia Magnética/métodos , Fantasmas de Imagen , Simulación por Computador
12.
Acta Myol ; 42(2-3): 43-52, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38090549

RESUMEN

Lamins A/C (encoded by LMNA gene) can lead to dilated cardiomyopathy (DCM). This pilot study sought to explore the postgenomic phenotype of end-stage lamin heart disease. Consecutive patients with end-stage lamin heart disease (LMNA-group, n = 7) and ischaemic DCM (ICM-group, n = 7) undergoing heart transplantation were prospectively enrolled. Samples were obtained from left atrium (LA), left ventricle (LV), right atrium (RA), right ventricle (RV) and interventricular septum (IVS), avoiding the infarcted myocardial segments in the ICM-group. Samples were analysed using a discovery 'shotgun' proteomics approach. We found that 990 proteins were differentially abundant between LMNA and ICM samples with the LA being most perturbed (16-fold more than the LV). Abundance of lamin A/C protein was reduced, but lamin B increased in LMNA LA/RA tissue compared to ICM, but not in LV/RV. Carbonic anhydrase 3 (CA3) was over-abundant across all LMNA tissue samples (LA, LV, RA, RV, and IVS) when compared to ICM. Transthyretin was more abundant in the LV/RV of LMNA compared to ICM, while sarcomeric proteins such as titin and cardiac alpha-cardiac myosin heavy chain were generally less abundant in RA/LA of LMNA. Protein expression profiling and enrichment analysis pointed towards sarcopenia, extracellular matrix remodeling, deficient myocardial energetics, redox imbalances, and abnormal calcium handling in LMNA samples. Compared to ICM, end-stage lamin heart disease is a biventricular but especially a biatrial disease appearing to have an abundance of lamin B, CA3 and transthyretin, potentially hinting to compensatory responses.


Asunto(s)
Cardiomiopatía Dilatada , Ventrículos Cardíacos , Humanos , Proteoma/genética , Prealbúmina/genética , Lamina Tipo B/genética , Proyectos Piloto , Cardiomiopatía Dilatada/genética , Lamina Tipo A/genética , Atrios Cardíacos/metabolismo , Mutación
13.
J Cardiovasc Magn Reson ; 25(1): 73, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38044439

RESUMEN

BACKGROUND: Electrocardiographic imaging (ECGI) generates electrophysiological (EP) biomarkers while cardiovascular magnetic resonance (CMR) imaging provides data about myocardial structure, function and tissue substrate. Combining this information in one examination is desirable but requires an affordable, reusable, and high-throughput solution. We therefore developed the CMR-ECGI vest and carried out this technical development study to assess its feasibility and repeatability in vivo. METHODS: CMR was prospectively performed at 3T on participants after collecting surface potentials using the locally designed and fabricated 256-lead ECGI vest. Epicardial maps were reconstructed to generate local EP parameters such as activation time (AT), repolarization time (RT) and activation recovery intervals (ARI). 20 intra- and inter-observer and 8 scan re-scan repeatability tests. RESULTS: 77 participants were recruited: 27 young healthy volunteers (HV, 38.9 ± 8.5 years, 35% male) and 50 older persons (77.0 ± 0.1 years, 52% male). CMR-ECGI was achieved in all participants using the same reusable, washable vest without complications. Intra- and inter-observer variability was low (correlation coefficients [rs] across unipolar electrograms = 0.99 and 0.98 respectively) and scan re-scan repeatability was high (rs between 0.81 and 0.93). Compared to young HV, older persons had significantly longer RT (296.8 vs 289.3 ms, p = 0.002), ARI (249.8 vs 235.1 ms, p = 0.002) and local gradients of AT, RT and ARI (0.40 vs 0.34 ms/mm, p = 0,01; 0.92 vs 0.77 ms/mm, p = 0.03; and 1.12 vs 0.92 ms/mm, p = 0.01 respectively). CONCLUSION: Our high-throughput CMR-ECGI solution is feasible and shows good reproducibility in younger and older participants. This new technology is now scalable for high throughput research to provide novel insights into arrhythmogenesis and potentially pave the way for more personalised risk stratification. CLINICAL TRIAL REGISTRATION: Title: Multimorbidity Life-Course Approach to Myocardial Health-A Cardiac Sub-Study of the MRC National Survey of Health and Development (NSHD) (MyoFit46). National Clinical Trials (NCT) number: NCT05455125. URL: https://clinicaltrials.gov/ct2/show/NCT05455125?term=MyoFit&draw=2&rank=1.


Asunto(s)
Corazón , Imagen por Resonancia Magnética , Anciano , Femenino , Humanos , Masculino , Estudios de Factibilidad , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética , Valor Predictivo de las Pruebas , Reproducibilidad de los Resultados , Adulto , Persona de Mediana Edad
14.
Artículo en Inglés | MEDLINE | ID: mdl-37831014

RESUMEN

BACKGROUND: There is no acceptable maximum wall thickness (MWT) threshold for diagnosing apical hypertrophic cardiomyopathy (ApHCM), with guidelines referring to ≥15 mm MWT for all hypertrophic cardiomyopathy subtypes. A normal myocardium naturally tapers apically; a fixed diagnostic threshold fails to account for this. Using cardiac magnetic resonance, "relative" ApHCM has been described with typical electrocardiographic features, loss of apical tapering, and cavity obliteration but also with MWT <15 mm. OBJECTIVES: The authors aimed to define normal apical wall thickness thresholds in healthy subjects and use these to accurately identify ApHCM. METHODS: The following healthy subjects were recruited: healthy UK Biobank imaging substudy subjects (n = 4,112) and an independent healthy volunteer group (n = 489). A clinically defined disease population of 104 ApHCM subjects was enrolled, with 72 overt (MWT ≥15 mm) and 32 relative (MWT <15 mm but typical electrocardiographic/imaging findings) ApHCM subjects. Cardiac magnetic resonance-derived MWT was measured in 16 segments using a published clinically validated machine learning algorithm. Segmental normal reference ranges were created and indexed (for age, sex, and body surface area), and diagnostic performance was assessed. RESULTS: In healthy cohorts, there was no clinically significant age-related difference for apical wall thickness. There were sex-related differences, but these were not clinically significant after indexing to body surface area. Therefore, segmental reference ranges for apical hypertrophy required indexing to body surface area only (not age or sex). The upper limit of normal (the largest of the 4 apical segments measured) corresponded to a maximum apical MWT in healthy subjects of 5.2 to 5.6 mm/m2 with an accuracy of 0.94 (the unindexed equivalent being 11 mm). This threshold was categorized as abnormal in 99% (71/72) of overt ApHCM patients, 78% (25/32) of relative ApHCM patients, 3% (122/4,112) of UK Biobank subjects, and 3% (13/489) of healthy volunteers. CONCLUSIONS: Per-segment indexed apical wall thickness thresholds are highly accurate for detecting apical hypertrophy, providing confidence to the reader to diagnose ApHCM in those not reaching current internationally recognized criteria.

15.
Clin Epigenetics ; 15(1): 164, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37853450

RESUMEN

BACKGROUND: DNA methylation (DNAm) age acceleration (AgeAccel) and cardiac age by 12-lead advanced electrocardiography (A-ECG) are promising biomarkers of biological and cardiac aging, respectively. We aimed to explore the relationships between DNAm age and A-ECG heart age and to understand the extent to which DNAm AgeAccel relates to cardiovascular (CV) risk factors in a British birth cohort from 1946. RESULTS: We studied four DNAm ages (AgeHannum, AgeHorvath, PhenoAge, and GrimAge) and their corresponding AgeAccel. Outcomes were the results from two publicly available ECG-based cardiac age scores: the Bayesian A-ECG-based heart age score of Lindow et al. 2022 and the deep neural network (DNN) ECG-based heart age score of Ribeiro et al. 2020. DNAm AgeAccel was also studied relative to results from two logistic regression-based A-ECG disease scores, one for left ventricular (LV) systolic dysfunction (LVSD), and one for LV electrical remodeling (LVER). Generalized linear models were used to explore the extent to which any associations between biological cardiometabolic risk factors (body mass index, hypertension, diabetes, high cholesterol, previous cardiovascular disease [CVD], and any CV risk factor) and the ECG-based outcomes are mediated by DNAm AgeAccel. We derived the total effects, average causal mediation effects (ACMEs), average direct effects (ADEs), and the proportion mediated [PM] with their 95% confidence intervals [CIs]. 498 participants (all 60-64 years) were included, with the youngest ECG heart age being 27 and the oldest 90. When exploring the associations between cardiometabolic risk factors and Bayesian A-ECG cardiac age, AgeAccelPheno appears to be a partial mediator, as ACME was 0.23 years [0.01, 0.52] p = 0.028 (i.e., PM≈18%) for diabetes, 0.34 [0.03, 0.74] p = 0.024 (i.e., PM≈15%) for high cholesterol, and 0.34 [0.03, 0.74] p = 0.024 (PM≈15%) for any CV risk factor. Similarly, AgeAccelGrim mediates ≈30% of the relationship between diabetes or high cholesterol and the DNN ECG-based heart age. When exploring the link between cardiometabolic risk factors and the A-ECG-based LVSD and LVER scores, it appears that AgeAccelPheno or AgeAccelGrim mediate 10-40% of these associations. CONCLUSION: By the age of 60, participants with accelerated DNA methylation appear to have older, weaker, and more electrically impaired hearts. We show that the harmful effects of CV risk factors on cardiac age and health, appear to be partially mediated by DNAm AgeAccelPheno and AgeAccelGrim. This highlights the need to further investigate the potential cardioprotective effects of selective DNA methyltransferases modulators.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus , Humanos , Lactante , Metilación de ADN , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/genética , Teorema de Bayes , Factores de Riesgo , Envejecimiento/genética , Factores de Riesgo de Enfermedad Cardiaca , Diabetes Mellitus/genética , Colesterol , Epigénesis Genética
16.
Medicina (Kaunas) ; 59(9)2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37763715

RESUMEN

The objective of this review is to investigate the commonalities of microvascular (small vessel) disease in heart failure with preserved ejection fraction (HFpEF) and cerebral small vessel disease (CSVD). Furthermore, the review aims to evaluate the current magnetic resonance imaging (MRI) diagnostic techniques for both conditions. By comparing the two conditions, this review seeks to identify potential opportunities to improve the understanding of both HFpEF and CSVD.


Asunto(s)
Enfermedades de los Pequeños Vasos Cerebrales , Insuficiencia Cardíaca , Humanos , Insuficiencia Cardíaca/diagnóstico por imagen , Volumen Sistólico , Encéfalo/diagnóstico por imagen , Enfermedades de los Pequeños Vasos Cerebrales/complicaciones , Enfermedades de los Pequeños Vasos Cerebrales/diagnóstico por imagen , Imagen por Resonancia Magnética
17.
Circulation ; 148(10): 808-818, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37463608

RESUMEN

BACKGROUND: In hypertrophic cardiomyopathy (HCM), myocyte disarray and microvascular disease (MVD) have been implicated in adverse events, and recent evidence suggests that these may occur early. As novel therapy provides promise for disease modification, detection of phenotype development is an emerging priority. To evaluate their utility as early and disease-specific biomarkers, we measured myocardial microstructure and MVD in 3 HCM groups-overt, either genotype-positive (G+LVH+) or genotype-negative (G-LVH+), and subclinical (G+LVH-) HCM-exploring relationships with electrical changes and genetic substrate. METHODS: This was a multicenter collaboration to study 206 subjects: 101 patients with overt HCM (51 G+LVH+ and 50 G-LVH+), 77 patients with G+LVH-, and 28 matched healthy volunteers. All underwent 12-lead ECG, quantitative perfusion cardiac magnetic resonance imaging (measuring myocardial blood flow, myocardial perfusion reserve, and perfusion defects), and cardiac diffusion tensor imaging measuring fractional anisotropy (lower values expected with more disarray), mean diffusivity (reflecting myocyte packing/interstitial expansion), and second eigenvector angle (measuring sheetlet orientation). RESULTS: Compared with healthy volunteers, patients with overt HCM had evidence of altered microstructure (lower fractional anisotropy, higher mean diffusivity, and higher second eigenvector angle; all P<0.001) and MVD (lower stress myocardial blood flow and myocardial perfusion reserve; both P<0.001). Patients with G-LVH+ were similar to those with G+LVH+ but had elevated second eigenvector angle (P<0.001 after adjustment for left ventricular hypertrophy and fibrosis). In overt disease, perfusion defects were found in all G+ but not all G- patients (100% [51/51] versus 82% [41/50]; P=0.001). Patients with G+LVH- compared with healthy volunteers similarly had altered microstructure, although to a lesser extent (all diffusion tensor imaging parameters; P<0.001), and MVD (reduced stress myocardial blood flow [P=0.015] with perfusion defects in 28% versus 0 healthy volunteers [P=0.002]). Disarray and MVD were independently associated with pathological electrocardiographic abnormalities in both overt and subclinical disease after adjustment for fibrosis and left ventricular hypertrophy (overt: fractional anisotropy: odds ratio for an abnormal ECG, 3.3, P=0.01; stress myocardial blood flow: odds ratio, 2.8, P=0.015; subclinical: fractional anisotropy odds ratio, 4.0, P=0.001; myocardial perfusion reserve odds ratio, 2.2, P=0.049). CONCLUSIONS: Microstructural alteration and MVD occur in overt HCM and are different in G+ and G- patients. Both also occur in the absence of hypertrophy in sarcomeric mutation carriers, in whom changes are associated with electrocardiographic abnormalities. Measurable changes in myocardial microstructure and microvascular function are early-phenotype biomarkers in the emerging era of disease-modifying therapy.


Asunto(s)
Cardiomiopatía Hipertrófica , Hipertrofia Ventricular Izquierda , Humanos , Sarcómeros/genética , Imagen de Difusión Tensora , Predisposición Genética a la Enfermedad , Mutación , Cardiomiopatía Hipertrófica/diagnóstico , Fenotipo , Biomarcadores , Fibrosis
18.
Eur Heart J Cardiovasc Imaging ; 25(1): 86-94, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-37523765

RESUMEN

AIMS: Anterior mitral valve leaflet (AMVL) elongation is detectable in overt and subclinical hypertrophic cardiomyopathy (HCM). We sought to investigate the dynamic motion of the aorto-mitral apparatus to understand the behaviour of the AMVL and the mechanisms of left ventricular outflow tract obstruction (LVOTO) predisposition in HCM. METHODS AND RESULTS: Cardiovascular magnetic resonance imaging using a 1.5 Tesla scanner was performed on 36 HCM sarcomere gene mutation carriers without left ventricular hypertrophy (G+LVH-), 31 HCM patients with preserved ejection fraction carrying a pathogenic sarcomere gene mutation (G+LVH+), and 53 age-, sex-, and body surface area-matched healthy volunteers. Dynamic excursion of the aorto-mitral apparatus was assessed semi-automatically on breath-held three-chamber cine steady-state free precession images. Four pre-defined regions of interest (ROIs) were tracked: ROIPMVL: hinge point of the posterior mitral valve leaflet; ROITRIG: intertrigonal mitral annulus; ROIAMVL: AMVL tip; and ROIAAO: anterior aortic annulus. Compared with controls, normalized two-dimensional displacement-vs.-time plots in G+LVH- revealed subtle but significant systolic anterior motion (SAM) of the AMVL (P < 0.0001) and reduced longitudinal excursion of ROIAAO (P = 0.014) and ROIPMVL (P = 0.048). In overt and subclinical HCM, excursion of the ROITRIG/AMVL/PMVL was positively associated with the burden of left ventricular fibrosis (P < 0.028). As expected, SAM was observed in G+LVH+ together with reduced longitudinal excursion of ROITRIG (P = 0.049) and ROIAAO (P = 0.008). CONCLUSION: Dyskinesia of the aorto-mitral apparatus, including SAM of the elongated AMVL, is detectable in subclinical HCM before the development of LVH or left atrial enlargement. These data have the potential to improve our understanding of early phenotype development and LVOTO predisposition in HCM.


Asunto(s)
Cardiomiopatía Hipertrófica , Obstrucción del Flujo Ventricular Externo , Humanos , Válvula Mitral/patología , Cardiomiopatía Hipertrófica/diagnóstico por imagen , Cardiomiopatía Hipertrófica/genética , Cardiomiopatía Hipertrófica/complicaciones , Hipertrofia Ventricular Izquierda , Imagen por Resonancia Magnética , Fenotipo , Obstrucción del Flujo Ventricular Externo/etiología , Obstrucción del Flujo Ventricular Externo/genética
19.
J Cardiovasc Magn Reson ; 25(1): 19, 2023 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-36935515

RESUMEN

INTRODUCTION: A long T2 relaxation time can reflect oedema, and myocardial inflammation when combined with increased plasma troponin levels. Cardiovascular magnetic resonance (CMR) T2 mapping therefore has potential to provide a key diagnostic and prognostic biomarkers. However, T2 varies by scanner, software, and sequence, highlighting the need for standardization and for a quality assurance system for T2 mapping in CMR. AIM: To fabricate and assess a phantom dedicated to the quality assurance of T2 mapping in CMR. METHOD: A T2 mapping phantom was manufactured to contain 9 T1 and T2 (T1|T2) tubes to mimic clinically relevant native and post-contrast T2 in myocardium across the health to inflammation spectrum (i.e., 43-74 ms) and across both field strengths (1.5 and 3 T). We evaluated the phantom's structural integrity, B0 and B1 uniformity using field maps, and temperature dependence. Baseline reference T1|T2 were measured using inversion recovery gradient echo and single-echo spin echo (SE) sequences respectively, both with long repetition times (10 s). Long-term reproducibility of T1|T2 was determined by repeated T1|T2 mapping of the phantom at baseline and at 12 months. RESULTS: The phantom embodies 9 internal agarose-containing T1|T2 tubes doped with nickel di-chloride (NiCl2) as the paramagnetic relaxation modifier to cover the clinically relevant spectrum of myocardial T2. The tubes are surrounded by an agarose-gel matrix which is doped with NiCl2 and packed with high-density polyethylene (HDPE) beads. All tubes at both field strengths, showed measurement errors up to ≤ 7.2 ms [< 14.7%] for estimated T2 by balanced steady-state free precession T2 mapping compared to reference SE T2 with the exception of the post-contrast tube of ultra-low T1 where the deviance was up to 16 ms [40.0%]. At 12 months, the phantom remained free of air bubbles, susceptibility, and off-resonance artifacts. The inclusion of HDPE beads effectively flattened the B0 and B1 magnetic fields in the imaged slice. Independent temperature dependency experiments over the 13-38 °C range confirmed the greater stability of shorter vs longer T1|T2 tubes. Excellent long-term (12-month) reproducibility of measured T1|T2 was demonstrated across both field strengths (all coefficients of variation < 1.38%). CONCLUSION: The T2 mapping phantom demonstrates excellent structural integrity, B0 and B1 uniformity, and reproducibility of its internal tube T1|T2 out to 1 year. This device may now be mass-produced to support the quality assurance of T2 mapping in CMR.


Asunto(s)
Imagen por Resonancia Magnética , Polietileno , Humanos , Reproducibilidad de los Resultados , Sefarosa , Valor Predictivo de las Pruebas , Imagen por Resonancia Magnética/métodos , Miocardio/patología , Fantasmas de Imagen , Espectroscopía de Resonancia Magnética , Inflamación/patología
20.
Circ Cardiovasc Imaging ; 16(3): e014907, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36943913

RESUMEN

BACKGROUND: Apical hypertrophic cardiomyopathy (ApHCM) accounts for ≈10% of hypertrophic cardiomyopathy cases and is characterized by apical hypertrophy, apical cavity obliteration, and tall ECG R waves with ischemic-looking deep T-wave inversion. These may be present even with <15 mm apical hypertrophy (relative ApHCM). Microvascular dysfunction is well described in hypertrophic cardiomyopathy. We hypothesized that apical perfusion defects would be common in ApHCM. METHODS: A 2-center study using cardiovascular magnetic resonance short- and long-axis quantitative adenosine vasodilator stress perfusion mapping. One hundred patients with ApHCM (68 overt hypertrophy [≥15 mm] and 32 relative ApHCM) were compared with 50 patients with asymmetrical septal hypertrophy hypertrophic cardiomyopathy and 40 healthy volunteer controls. Perfusion was assessed visually and quantitatively as myocardial blood flow and myocardial perfusion reserve. RESULTS: Apical perfusion defects were present in all overt ApHCM patients (100%), all relative ApHCM patients (100%), 36% of asymmetrical septal hypertrophy hypertrophic cardiomyopathy, and 0% of healthy volunteers (P<0.001). In 10% of patients with ApHCM, perfusion defects were sufficiently apical that conventional short-axis views missed them. In 29%, stress myocardial blood flow fell below rest values. Stress myocardial blood flow was most impaired subendocardially, with greater hypertrophy or scar, and with apical aneurysms. Impaired apical myocardial blood flow was most strongly predicted by thicker apical segments (ß-coefficient, -0.031 mL/g per min [CI, -0.06 to -0.01]; P=0.013), higher ejection fraction (-0.025 mL/g per min [CI, -0.04 to -0.01]; P<0.005), and ECG maximum R-wave height (-0.023 mL/g per min [CI, -0.04 to -0.01]; P<0.005). CONCLUSIONS: Apical perfusion defects are universally present in ApHCM at all stages. Its ubiquitous presence along with characteristic ECG suggests ischemia may play a disease-defining role in ApHCM.


Asunto(s)
Miocardiopatía Hipertrófica Apical , Cardiomiopatía Hipertrófica , Humanos , Ecocardiografía , Cardiomiopatía Hipertrófica/diagnóstico , Cardiomiopatía Hipertrófica/diagnóstico por imagen , Isquemia , Hipertrofia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...