Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 2762, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38553447

RESUMEN

The significance of transient neuropeptide expression during postnatal brain development is unknown. Here, we show that galanin expression in the ventrobasal thalamus of infant mice coincides with whisker map development and modulates subcortical circuit wiring. Time-resolved neuroanatomy and single-nucleus RNA-seq identified complementary galanin (Gal) and galanin receptor 1 (Galr1) expression in the ventrobasal thalamus and the principal sensory nucleus of the trigeminal nerve (Pr5), respectively. Somatodendritic galanin release from the ventrobasal thalamus was time-locked to the first postnatal week, when Gal1R+ Pr5 afferents form glutamatergic (Slc17a6+) synapses for the topographical whisker map to emerge. RNAi-mediated silencing of galanin expression disrupted glutamatergic synaptogenesis, which manifested as impaired whisker-dependent exploratory behaviors in infant mice, with behavioral abnormalities enduring into adulthood. Pharmacological probing of receptor selectivity in vivo corroborated that target recognition and synaptogenesis in the thalamus, at least in part, are reliant on agonist-induced Gal1R activation in inbound excitatory axons. Overall, we suggest a neuropeptide-dependent developmental mechanism to contribute to the topographical specification of a fundamental sensory neurocircuit in mice.


Asunto(s)
Galanina , Vibrisas , Animales , Humanos , Ratones , Axones/metabolismo , Encéfalo/metabolismo , Galanina/metabolismo , Tálamo/metabolismo , Vibrisas/fisiología
2.
Proc Natl Acad Sci U S A ; 120(31): e2222095120, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37487094

RESUMEN

The locus coeruleus (LC) is a small nucleus in the pons from which ascending and descending projections innervate major parts of the central nervous system. Its major transmitter is norepinephrine (NE). This system is evolutionarily conserved, including in humans, and its functions are associated with wakefulness and related to disorders, such as depression. Here, we performed single-cell ribonucleic acid-sequencing (RNA-seq) to subdivide neurons in the LC (24 clusters in total) into 3 NE, 17 glutamate, and 5 γ-aminobutyric acid (GABA) subtypes, and to chart their neuropeptide, cotransmitter, and receptor profiles. We found that NE neurons expressed at least 19 neuropeptide transcripts, notably galanin (Gal) but not Npy, and >30 neuropeptide receptors. Among the galanin receptors, Galr1 was expressed in ~19% of NE neurons, as was also confirmed by in situ hybridization. Unexpectedly, Galr1 was highly expressed in GABA neurons surrounding the NE ensemble. Patch-clamp electrophysiology and cell-type-specific Ca2+-imaging using GCaMP6s revealed that a GalR1 agonist inhibits up to ~35% of NE neurons. This effect is direct and does not rely on feed-forward GABA inhibition. Our results define a role for the galanin system in NE functions, and a conceptual framework for the action of many other peptides and their receptors.


Asunto(s)
Galanina , Hormonas Peptídicas , Humanos , Animales , Ratones , Locus Coeruleus , Neuronas , Ácido Glutámico , Norepinefrina
3.
Cells ; 11(17)2022 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-36078064

RESUMEN

Astrocytes, the main glial cells of the central nervous system, play a key role in brain volume control due to their intimate contacts with cerebral blood vessels and the expression of a distinctive equipment of proteins involved in solute/water transport. Among these is MLC1, a protein highly expressed in perivascular astrocytes and whose mutations cause megalencephalic leukoencephalopathy with subcortical cysts (MLC), an incurable leukodystrophy characterized by macrocephaly, chronic brain edema, cysts, myelin vacuolation, and astrocyte swelling. Although, in astrocytes, MLC1 mutations are known to affect the swelling-activated chloride currents (ICl,swell) mediated by the volume-regulated anion channel (VRAC), and the regulatory volume decrease, MLC1's proper function is still unknown. By combining molecular, biochemical, proteomic, electrophysiological, and imaging techniques, we here show that MLC1 is a Ca2+/Calmodulin-dependent protein kinase II (CaMKII) target protein, whose phosphorylation, occurring in response to intracellular Ca2+ release, potentiates VRAC-mediated ICl,swell. Overall, these findings reveal that MLC1 is a Ca2+-regulated protein, linking volume regulation to Ca2+ signaling in astrocytes. This knowledge provides new insight into the MLC1 protein function and into the mechanisms controlling ion/water exchanges in the brain, which may help identify possible molecular targets for the treatment of MLC and other pathological conditions caused by astrocyte swelling and brain edema.


Asunto(s)
Edema Encefálico , Quistes , Astrocitos/metabolismo , Edema Encefálico/patología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Cloruros/metabolismo , Quistes/metabolismo , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias , Humanos , Proteínas de la Membrana/metabolismo , Proteómica , Canales Aniónicos Dependientes del Voltaje/metabolismo , Agua/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35135875

RESUMEN

The L-type voltage-gated Ca2+ channel gene CACNA1C is a risk gene for various psychiatric conditions, including schizophrenia and bipolar disorder. However, the cellular mechanism by which CACNA1C contributes to psychiatric disorders has not been elucidated. Here, we report that the embryonic deletion of Cacna1c in neurons destined for the cerebral cortex using an Emx1-Cre strategy disturbs spontaneous Ca2+ activity and causes abnormal brain development and anxiety. By combining computational modeling with electrophysiological membrane potential manipulation, we found that neural network activity was driven by intrinsic spontaneous Ca2+ activity in distinct progenitor cells expressing marginally increased levels of voltage-gated Ca2+ channels. MRI examination of the Cacna1c knockout mouse brains revealed volumetric differences in the neocortex, hippocampus, and periaqueductal gray. These results suggest that Cacna1c acts as a molecular switch and that its disruption during embryogenesis can perturb Ca2+ handling and neural development, which may increase susceptibility to psychiatric disease.


Asunto(s)
Trastornos de Ansiedad/metabolismo , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Canales de Calcio Tipo L/metabolismo , Calcio/metabolismo , Animales , Relojes Biológicos , Canales de Calcio Tipo L/genética , Regulación del Desarrollo de la Expresión Génica , Predisposición Genética a la Enfermedad , Ratones , Ratones Noqueados , Células-Madre Neurales
5.
Cancers (Basel) ; 11(3)2019 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-30841564

RESUMEN

Malignancy of glioblastoma multiforme (GBM), the most common and aggressive form of human brain tumor, strongly depends on its enhanced cell invasion and death evasion which make surgery and accompanying therapies highly ineffective. Several ion channels that regulate membrane potential, cytosolic Ca2+ concentration and cell volume in GBM cells play significant roles in sustaining these processes. Among them, the volume-regulated anion channel (VRAC), which mediates the swelling-activated chloride current (IClswell) and is highly expressed in GBM cells, arguably plays a major role. VRAC is primarily involved in reestablishing the original cell volume that may be lost under several physiopathological conditions, but also in sustaining the shape and cell volume changes needed for cell migration and proliferation. While experimentally VRAC is activated by exposing cells to hypotonic solutions that cause the increase of cell volume, in vivo it is thought to be controlled by several different stimuli and modulators. In this review we focus on our recent work showing that two conditions normally occurring in pathological GBM tissues, namely high serum levels and severe hypoxia, were both able to activate VRAC, and their activation was found to promote cell migration and resistance to cell death, both features enhancing GBM malignancy. Also, the fact that the signal transduction pathway leading to VRAC activation appears to involve GBM specific intracellular components, such as diacylglicerol kinase and phosphatidic acid, reportedly not involved in the activation of VRAC in healthy tissues, is a relevant finding. Based on these observations and the impact of VRAC in the physiopathology of GBM, targeting this channel or its intracellular regulators may represent an effective strategy to contrast this lethal tumor.

6.
Hum Mol Genet ; 25(8): 1543-58, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26908604

RESUMEN

Mutations in the MLC1 gene, which encodes a protein expressed in brain astrocytes, are the leading cause of MLC, a rare leukodystrophy characterized by macrocephaly, brain edema, subcortical cysts, myelin and astrocyte vacuolation. Although recent studies indicate that MLC1 protein is implicated in the regulation of cell volume changes, the exact role of MLC1 in brain physiology and in the pathogenesis of MLC disease remains to be clarified. In preliminary experiments, we observed that MLC1 was poorly expressed in highly proliferating astrocytoma cells when compared with primary astrocytes, and that modulation of MLC1 expression influenced astrocyte growth. Because volume changes are key events in cell proliferation and during brain development MLC1 expression is inversely correlated to astrocyte progenitor proliferation levels, we investigated the possible role for MLC1 in the control of astrocyte proliferation. We found that overexpression of wild type but not mutant MLC1 in human astrocytoma cells hampered cell growth by favoring epidermal growth factor receptor (EGFR) degradation and by inhibiting EGF-induced Ca(+) entry, ERK1/2 and PLCγ1 activation, and calcium-activated KCa3.1 potassium channel function, all molecular pathways involved in astrocyte proliferation stimulation. Interestingly, MLC1 did not influence AKT, an EGFR-stimulated kinase involved in cell survival. Moreover, EGFR expression was higher in macrophages derived from MLC patients than from healthy individuals. Since reactive astrocytes proliferate and re-express EGFR in response to different pathological stimuli, the present findings provide new information on MLC pathogenesis and unravel an important role for MLC1 in other brain pathological conditions where astrocyte activation occurs.


Asunto(s)
Astrocitos/citología , Quistes/patología , Receptores ErbB/metabolismo , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/patología , Proteínas de la Membrana/metabolismo , Animales , Astrocitos/metabolismo , Astrocitoma/genética , Astrocitoma/patología , Línea Celular Tumoral , Proliferación Celular , Quistes/genética , Regulación de la Expresión Génica , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/genética , Humanos , Proteínas de la Membrana/genética , Mutación , Ratas , Transducción de Señal
7.
Front Cell Neurosci ; 9: 152, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25941475

RESUMEN

Glioblastoma (GBM) is the most common and aggressive primary brain tumor, and is notable for spreading so effectively through the brain parenchyma to make complete surgical resection virtually impossible, and prospect of life dismal. Several ion channels have been involved in GBM migration and invasion, due to their critical role in supporting volume changes and Ca(2+) influx occuring during the process. The large-conductance, Ca(2+)-activated K (BK) channels, markedly overexpressed in biopsies of patients with GBMs and in GBM cell lines, have attracted much interest and have been suggested to play a central role in cell migration and invasion as candidate channels for providing the ion efflux and consequent water extrusion that allow cell shrinkage during migration. Available experimental data on the role of BK channel in migration and invasion are not consistent though. While BK channels block typically resulted in inhibition of cell migration or in no effect, their activation would either enhance or inhibit the process. This short review reexamines the relevant available data on the topic, and presents a unifying paradigm capable of reconciling present discrepancies. According to this paradigm, BK channels would not contribute to migration under conditions where the [Ca(2+)] i is too low for their activation. They will instead positively contribute to migration for intermediate [Ca(2+)] i , insufficient as such to activate BK channels, but capable of predisposing them to cyclic activation following oscillatory [Ca(2+)] i increases. Finally, steadily active BK channels because of prolonged high [Ca(2+)] i would inhibit migration as their steady activity would be unsuitable to match the cyclic cell volume changes needed for proper cell migration.

8.
Front Cell Neurosci ; 9: 34, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25784856

RESUMEN

Autism spectrum disorders (ASDs) are characterized by impaired ability to properly implement environmental stimuli that are essential to achieve a state of social and cultural exchange. Indeed, the main features of ASD are impairments of interpersonal relationships, verbal and non-verbal communication and restricted and repetitive behaviors. These aspects are often accompanied by several comorbidities such as motor delay, praxis impairment, gait abnormalities, insomnia, and above all epilepsy. Genetic analyses of autistic individuals uncovered deleterious mutations in several K(+) channel types strengthening the notion that their intrinsic dysfunction may play a central etiologic role in ASD. However, indirect implication of K(+) channels in ASD has been also reported. For instance, loss of fragile X mental retardation protein (FMRP) results in K(+) channels deregulation, network dysfunction and ASD-like cognitive and behavioral symptoms. This review provides an update on direct and indirect implications of K(+) channels in ASDs. Owing to a mounting body of evidence associating a channelopathy pathogenesis to autism and showing that nearly 500 ion channel proteins are encoded by the human genome, we propose to classify ASDs - whose susceptibility is significantly enhanced by ion channels defects, either in a monogenic or multigenic condition - in a new category named " c hannel A utism S pectrum D isorder" (channelASD; cASD) and introduce a new taxonomy (e.g., Kv x.y-channelASD and likewise Nav x.y-channelASD, Cav x.y-channelASD; etc.). This review also highlights some degree of clinical and genetic overlap between K(+) channelASDs and K(+) channelepsies, whereby such correlation suggests that a subcategory characterized by a channelASD-channelepsy phenotype may be distinguished. Ultimately, this overview aims to further understand the different clinical subgroups and help parse out the distinct biological basis of autism that are essential to establish patient-tailored treatments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA