Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 5: 9617, 2015 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-25892711

RESUMEN

In this report, both p- and n-type tin oxide thin-film transistors (TFTs) were simultaneously achieved using single-step deposition of the tin oxide channel layer. The tuning of charge carrier polarity in the tin oxide channel is achieved by selectively depositing a copper oxide capping layer on top of tin oxide, which serves as an oxygen source, providing additional oxygen to form an n-type tin dioxide phase. The oxidation process can be realized by annealing at temperature as low as 190 °C in air, which is significantly lower than the temperature generally required to form tin dioxide. Based on this approach, CMOS inverters based entirely on tin oxide TFTs were fabricated. Our method provides a solution to lower the process temperature for tin dioxide phase, which facilitates the application of this transparent oxide semiconductor in emerging electronic devices field.

2.
Sci Rep ; 4: 5243, 2014 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-24912617

RESUMEN

Here we report for the first time a hybrid p-channel polymer ferroelectric field-effect transistor memory device with record mobility. The memory device, fabricated at 200°C on both plastic polyimide and glass substrates, uses ferroelectric polymer P(VDF-TrFE) as the gate dielectric and transparent p-type oxide (SnO) as the active channel layer. A record mobility of 3.3 cm(2)V(-1)s(-1), large memory window (∼16 V), low read voltages (∼-1 V), and excellent retention characteristics up to 5000 sec have been achieved. The mobility achieved in our devices is over 10 times higher than previously reported polymer ferroelectric field-effect transistor memory with p-type channel. This demonstration opens the door for the development of non-volatile memory devices based on dual channel for emerging transparent and flexible electronic devices.

3.
Sci Rep ; 4: 4672, 2014 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-24728223

RESUMEN

We report, for the first time, the use of a single step deposition of semiconductor channel layer to simultaneously achieve both n- and p-type transport in transparent oxide thin film transistors (TFTs). This effect is achieved by controlling the concentration of hydroxyl groups (OH-groups) in the underlying gate dielectrics. The semiconducting tin oxide layer was deposited at room temperature, and the maximum device fabrication temperature was 350 °C. Both n and p-type TFTs showed fairly comparable performance. A functional CMOS inverter was fabricated using this novel scheme, indicating the potential use of our approach for various practical applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...