Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 189
Filtrar
1.
bioRxiv ; 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38712192

RESUMEN

Cancer screening is based upon a linear model of growth and invasion. Yet, early dissemination during the lengthy pre-diagnostic phase suggests that nonlinearity in growth can also occur. Therefore, we quantitatively traced the invisible and visible phases of tumorigenesis in the mammary gland for more than two-thousand tumors. Dynamic mathematical models of the invisible phase revealed an occult checkpoint resulting in nonlinear progression of transformed field cells. We found that expansile fields have increased dwell time at the occult checkpoint resulting in a large reservoir of image detectable precursors prior to invasion. In contrast, slowly proliferating lesions disseminate early and then transition rapidly through an occult checkpoint in a process we term nascent lethality. Our data illustrate how nonlinear growth across an occult checkpoint can account for a paradoxical increase in early-stage cancer detection without a dramatic reduction in metastatic burden. Highlights: Growth during the invisible phase of tumorigenesis is a nonlinear processField size and field growth rate are uncoupled from metastatic potentialOccult transition rates vary by genotypeNascent lethal lesions are currently undetectable.

3.
Nat Commun ; 13(1): 4364, 2022 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-35902588

RESUMEN

Androgen/androgen receptor (AR) signaling pathways are essential for prostate tumorigenesis. However, the fundamental mechanisms underlying the AR functioning as a tumor promoter in inducing prostatic oncogenesis still remain elusive. Here, we demonstrate that a subpopulation of prostatic Osr1 (odd skipped-related 1)-lineage cells functions as tumor progenitors in prostate tumorigenesis. Single cell transcriptomic analyses reveal that aberrant AR activation in these cells elevates insulin-like growth factor 1 (IGF1) signaling pathways and initiates oncogenic transformation. Elevating IGF1 signaling further cumulates Wnt/ß-catenin pathways in transformed cells to promote prostate tumor development. Correlations between altered androgen, IGF1, and Wnt/ß-catenin signaling are also identified in human prostate cancer samples, uncovering a dynamic regulatory loop initiated by the AR through prostate cancer development. Co-inhibition of androgen and Wnt-signaling pathways significantly represses the growth of AR-positive tumor cells in both ex-vivo and in-vivo, implicating co-targeting therapeutic strategies for these pathways to treat advanced prostate cancer.


Asunto(s)
Próstata , Neoplasias de la Próstata , Andrógenos/metabolismo , Carcinogénesis/patología , Transformación Celular Neoplásica/patología , Humanos , Factor I del Crecimiento Similar a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/metabolismo , Masculino , Próstata/patología , Neoplasias de la Próstata/patología , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Células Madre/metabolismo , Proteínas Wnt/metabolismo , Vía de Señalización Wnt , beta Catenina/genética , beta Catenina/metabolismo
4.
Mol Cancer Res ; 20(9): 1391-1404, 2022 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-35675041

RESUMEN

Ecdysoneless (ECD) protein is essential for embryogenesis, cell-cycle progression, and cellular stress mitigation with an emerging role in mRNA biogenesis. We have previously shown that ECD protein as well as its mRNA are overexpressed in breast cancer and ECD overexpression predicts shorter survival in patients with breast cancer. However, the genetic evidence for an oncogenic role of ECD has not been established. Here, we generated transgenic mice with mammary epithelium-targeted overexpression of an inducible human ECD transgene (ECDTg). Significantly, ECDTg mice develop mammary hyperplasia, preneoplastic lesions, and heterogeneous tumors with occasional lung metastasis. ECDTg tumors exhibit epithelial to mesenchymal transition and cancer stem cell characteristics. Organoid cultures of ECDTg tumors showed ECD dependency for in vitro oncogenic phenotype and in vivo growth when implanted in mice. RNA sequencing (RNA-seq) analysis of ECDTg tumors showed a c-MYC signature, and alterations in ECD levels regulated c-MYC mRNA and protein levels as well as glucose metabolism. ECD knockdown-induced decrease in glucose uptake was rescued by overexpression of mouse ECD as well as c-MYC. Publicly available expression data analyses showed a significant correlation of ECD and c-MYC overexpression in breast cancer, and ECD and c-MYC coexpression exhibits worse survival in patients with breast cancer. Taken together, we establish a novel role of overexpressed ECD as an oncogenesis driver in the mouse mammary gland through upregulation of c-MYC-mediated glucose metabolism. IMPLICATIONS: We demonstrate ECD overexpression in the mammary gland of mice led to the development of a tumor progression model through upregulation of c-MYC signaling and glucose metabolism.


Asunto(s)
Neoplasias de la Mama , Carcinogénesis , Carcinógenos , Proteínas Portadoras , Glucosa , Proteínas Proto-Oncogénicas c-myc , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Carcinogénesis/genética , Carcinogénesis/patología , Proteínas Portadoras/genética , Transición Epitelial-Mesenquimal/genética , Femenino , Glucosa/metabolismo , Humanos , Hiperplasia/genética , Hiperplasia/patología , Neoplasias Pulmonares/secundario , Glándulas Mamarias Animales/patología , Neoplasias Mamarias Experimentales/genética , Neoplasias Mamarias Experimentales/patología , Ratones , Ratones Transgénicos , Lesiones Precancerosas/genética , Lesiones Precancerosas/patología , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , ARN Mensajero , Transducción de Señal , Regulación hacia Arriba
5.
Oncogene ; 41(25): 3445-3451, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35538223

RESUMEN

p110α is a catalytic subunit of phosphoinositide 3-kinase (PI3K), a major downstream effector of receptor tyrosine kinase ErbB2, that is amplified and overexpressed in 20-30% of breast cancers, 40% of which have an activating mutation in p110α. Despite the high frequency of PIK3CA gain-of-function mutations, their prognostic value is controversial. Here, we employ a knock-in transgenic strategy to restrict the expression of an activated form of ErbB2 and p110α kinase domain mutation (p110αHR) in the mammary epithelium. Physiological levels of transgene expression under the control of their endogenous promoters did not result in a major synergistic effect. However, tumors arising in ErbB2/p110αHR bi-genic strain metastasized to the lung with significantly reduced capacity compared to tumors expressing ErbB2 alone. The reduced metastasis was further associated with retention of the myoepithelial layer reminiscent of ductal carcinoma in situ (DCIS), a non-invasive stage of human breast cancer. Molecular and biochemical analyses revealed that these poorly metastatic tumors exhibited a significant decrease in phospho-myosin light chain 2 (MLC2) associated with cellular contractility and migration. Examination of human samples for MLC2 activity revealed a progressive increase in cellular contractility between non-invasive DCIS and invasive ductal carcinoma. Collectively, these data argue that p110αHR mutation attenuates metastatic behavior in the context of ErbB2-driven breast cancer.


Asunto(s)
Neoplasias de la Mama , Carcinoma Intraductal no Infiltrante , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Fosfatidilinositol 3-Quinasa Clase I/genética , Femenino , Humanos , Mutación , Fosfatidilinositol 3-Quinasa/genética , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Receptor ErbB-2/genética
6.
NPJ Breast Cancer ; 8(1): 41, 2022 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-35332139

RESUMEN

The staging and local management of breast cancer involves the evaluation of the extent and completeness of excision of both the invasive carcinoma component and also the intraductal component or ductal carcinoma in situ. When both invasive ductal carcinoma and coincident ductal carcinoma in situ are present, assessment of the extent and localization of both components is required for optimal therapeutic planning. We have used a mouse model of breast cancer to evaluate the feasibility of applying molecular imaging to assess the local status of cancers in vivo. Multi-tracer positron emission tomography (PET) and magnetic resonance imaging (MRI) characterize the transition from premalignancy to invasive carcinoma. PET tracers for glucose consumption, membrane synthesis, and neoangiogenesis in combination with a Gaussian mixture model-based analysis reveal image-derived thresholds to separate the different stages within the whole-lesion. Autoradiography, histology, and quantitative image analysis of immunohistochemistry further corroborate our in vivo findings. Finally, clinical data further support our conclusions and demonstrate translational potential. In summary, this preclinical model provides a platform for characterizing multistep tumor progression and provides proof of concept that supports the utilization of advanced protocols for PET/MRI in clinical breast cancer imaging.

7.
Nat Commun ; 12(1): 3742, 2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-34145248

RESUMEN

Claudin-low breast cancer represents an aggressive molecular subtype that is comprised of mostly triple-negative mammary tumor cells that possess stem cell-like and mesenchymal features. Little is known about the cellular origin and oncogenic drivers that promote claudin-low breast cancer. In this study, we show that persistent oncogenic RAS signaling causes highly metastatic triple-negative mammary tumors in mice. More importantly, the activation of endogenous mutant KRAS and expression of exogenous KRAS specifically in luminal epithelial cells in a continuous and differentiation stage-independent manner induces preneoplastic lesions that evolve into basal-like and claudin-low mammary cancers. Further investigations demonstrate that the continuous signaling of oncogenic RAS, as well as regulators of EMT, play a crucial role in the cellular plasticity and maintenance of the mesenchymal and stem cell characteristics of claudin-low mammary cancer cells.


Asunto(s)
Claudinas/metabolismo , Glándulas Mamarias Animales/patología , Neoplasias Mamarias Animales/genética , Células Madre Mesenquimatosas/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Animales , Diferenciación Celular , Línea Celular Tumoral , Células Epiteliales/patología , Transición Epitelial-Mesenquimal/genética , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Neoplasias Mamarias Animales/patología , Ratones , Ratones Noqueados , Proteínas Proto-Oncogénicas p21(ras)/genética , Neoplasias de la Mama Triple Negativas/genética
8.
Mol Cancer Res ; 19(10): 1699-1711, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34131071

RESUMEN

HER2-positive breast cancers are among the most heterogeneous breast cancer subtypes. The early amplification of HER2 and its known oncogenic isoforms provide a plausible mechanism in which distinct programs of tumor heterogeneity could be traced to the initial oncogenic event. Here a Cancer rainbow mouse simultaneously expressing fluorescently barcoded wildtype (WTHER2), exon-16 null (d16HER2), and N-terminally truncated (p95HER2) HER2 isoforms is used to trace tumorigenesis from initiation to invasion. Tumorigenesis was visualized using whole-gland fluorescent lineage tracing and single-cell molecular pathology. We demonstrate that within weeks of expression, morphologic aberrations were already present and unique to each HER2 isoform. Although WTHER2 cells were abundant throughout the mammary ducts, detectable lesions were exceptionally rare. In contrast, d16HER2 and p95HER2 induced rapid tumor development. d16HER2 incited homogenous and proliferative luminal-like lesions which infrequently progressed to invasive phenotypes whereas p95HER2 lesions were heterogenous and invasive at the smallest detectable stage. Distinct cancer trajectories were observed for d16HER2 and p95HER2 tumors as evidenced by oncogene-dependent changes in epithelial specification and the tumor microenvironment. These data provide direct experimental evidence that intratumor heterogeneity programs begin very early and well in advance of screen or clinically detectable breast cancer. IMPLICATIONS: Although all HER2 breast cancers are treated equally, we show a mechanism by which clinically undetected HER2 isoforms program heterogenous cancer phenotypes through biased epithelial specification and adaptations within the tumor microenvironment.


Asunto(s)
Neoplasias de la Mama/genética , Carcinogénesis/genética , Isoformas de Proteínas/genética , Receptor ErbB-2/genética , Animales , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Ratones , Ratones Noqueados , Microambiente Tumoral/genética
9.
Cell Rep ; 31(4): 107571, 2020 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-32348753

RESUMEN

Mechanistic target of rapamycin complex 1 (mTORC1) is a master modulator of cellular growth, and its aberrant regulation is recurrently documented within breast cancer. While the small GTPase Rheb1 is the canonical activator of mTORC1, Rheb1-independent mechanisms of mTORC1 activation have also been reported but have not been fully understood. Employing multiple transgenic mouse models of breast cancer, we report that ablation of Rheb1 significantly impedes mammary tumorigenesis. In the absence of Rheb1, a block in tumor initiation can be overcome by multiple independent mutations in Mtor to allow Rheb1-independent reactivation of mTORC1. We further demonstrate that the mTOR kinase is indispensable for tumor initiation as the genetic ablation of mTOR abolishes mammary tumorigenesis. Collectively, our findings demonstrate that mTORC1 activation is indispensable for mammary tumor initiation and that tumors acquire alternative mechanisms of mTORC1 activation.


Asunto(s)
Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Proteínas ras/metabolismo , Diferenciación Celular , Humanos , Mutación , Transducción de Señal
10.
Artículo en Inglés | MEDLINE | ID: mdl-31941024

RESUMEN

During puberty, a woman's breasts are vulnerable to environmental damage ("window of vulnerability"). Early exposure to environmental carcinogens, endocrine disruptors, and unhealthy foods (refined sugar, processed fats, food additives) are hypothesized to promote molecular damage that increases breast cancer risk. However, prospective human studies are difficult to perform and effective interventions to prevent these early exposures are lacking. It is difficult to prevent environmental exposures during puberty. Specifically, young women are repeatedly exposed to media messaging that promotes unhealthy foods. Young women living in disadvantaged neighborhoods experience additional challenges including a lack of access to healthy food and exposure to contaminated air, water, and soil. The purpose of this review is to gather information on potential exposures during puberty. In future directions, this information will be used to help elementary/middle-school girls to identify and quantitate environmental exposures and develop cost-effective strategies to reduce exposures.


Asunto(s)
Neoplasias de la Mama/epidemiología , Exposición a Riesgos Ambientales , Neoplasias de la Mama/genética , Susceptibilidad a Enfermedades , Epigénesis Genética , Femenino , Humanos , Estado Nutricional , Obesidad/epidemiología , Pubertad , Características de la Residencia , Factores de Riesgo , Estrés Fisiológico , Estrés Psicológico
11.
Breast Cancer Res ; 21(1): 140, 2019 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-31829284

RESUMEN

BACKGROUND: Breast cancer is the most common cancer to affect women and one of the leading causes of cancer-related deaths. Proper regulation of cell cycle checkpoints plays a critical role in preventing the accumulation of deleterious mutations. Perturbations in the expression or activity of mediators of cell cycle progression or checkpoint activation represent important events that may increase susceptibility to the onset of carcinogenesis. The atypical cyclin-like protein Spy1 was isolated in a screen for novel genes that could bypass the DNA damage response. Clinical data demonstrates that protein levels of Spy1 are significantly elevated in ductal and lobular carcinoma of the breast. We hypothesized that elevated Spy1 would override protective cell cycle checkpoints and support the onset of mammary tumourigenesis. METHODS: We generated a transgenic mouse model driving expression of Spy1 in the mammary epithelium. Mammary development, growth characteristics and susceptibility to tumourigenesis were studied. In vitro studies were conducted to investigate the relationship between Spy1 and p53. RESULTS: We found that in the presence of wild-type p53, Spy1 protein is held 'in check' via protein degradation, representing a novel endogenous mechanism to ensure protected checkpoint control. Regulation of Spy1 by p53 is at the protein level and is mediated in part by Nedd4. Mutation or abrogation of p53 is sufficient to allow for accumulation of Spy1 levels resulting in mammary hyperplasia. Sustained elevation of Spy1 results in elevated proliferation of the mammary gland and susceptibility to tumourigenesis. CONCLUSIONS: This mouse model demonstrates for the first time that degradation of the cyclin-like protein Spy1 is an essential component of p53-mediated tumour suppression. Targeting cyclin-like protein activity may therefore represent a mechanism of re-sensitizing cells to important cell cycle checkpoints in a therapeutic setting.


Asunto(s)
Neoplasias de la Mama/etiología , Proteínas de Ciclo Celular/genética , Transformación Celular Neoplásica/genética , Susceptibilidad a Enfermedades , Proteína p53 Supresora de Tumor/genética , Animales , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Puntos de Control del Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Transformación Celular Neoplásica/metabolismo , Ciclinas , Daño del ADN , Modelos Animales de Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica , Marcación de Gen , Humanos , Inmunohistoquímica , Ratones , Ratones Noqueados , Ratones Transgénicos , Unión Proteica , Proteína p53 Supresora de Tumor/metabolismo
12.
Nat Commun ; 10(1): 5490, 2019 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-31792216

RESUMEN

Field cancerization is a premalignant process marked by clones of oncogenic mutations spreading through the epithelium. The timescales of intestinal field cancerization can be variable and the mechanisms driving the rapid spread of oncogenic clones are unknown. Here we use a Cancer rainbow (Crainbow) modelling system for fluorescently barcoding somatic mutations and directly visualizing the clonal expansion and spread of oncogenes. Crainbow shows that mutations of ß-catenin (Ctnnb1) within the intestinal stem cell results in widespread expansion of oncogenes during perinatal development but not in adults. In contrast, mutations that extrinsically disrupt the stem cell microenvironment can spread in adult intestine without delay. We observe the rapid spread of premalignant clones in Crainbow mice expressing oncogenic Rspondin-3 (RSPO3), which occurs by increasing crypt fission and inhibiting crypt fixation. Crainbow modelling provides insight into how somatic mutations rapidly spread and a plausible mechanism for predetermining the intratumor heterogeneity found in colon cancers.


Asunto(s)
Neoplasias del Colon/genética , Modelos Animales de Enfermedad , Células Madre Neoplásicas/citología , Animales , Carcinogénesis , Proliferación Celular , Neoplasias del Colon/metabolismo , Neoplasias del Colon/fisiopatología , Humanos , Ratones , Mutación , Células Madre Neoplásicas/metabolismo , Oncogenes , Trombospondinas/genética , Trombospondinas/metabolismo
13.
PLoS Genet ; 15(10): e1008451, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31658259

RESUMEN

E-cadherin complexes with the actin cytoskeleton via cytoplasmic catenins and maintains the functional characteristics and integrity of the epithelia in normal epithelial tissues. Lost expression of E-cadherin disrupts this complex resulting in loss of cell polarity, epithelial denudation and increased epithelial permeability in a variety of tissues. Decreased expression of E-cadherin has also been observed in invasive and metastatic human tumors. In this study, we investigated the effect of E-cadherin loss in prostatic epithelium using newly developed genetically engineered mouse models. Deletion of E-cadherin in prostatic luminal epithelial cells with modified probasin promoter driven Cre (PB-Cre4) induced the development of mouse prostatic intraepithelial neoplasia (PIN). An increase in levels of cytoplasmic and nuclear ß-catenin appeared in E-cadherin deleted atypical cells within PIN lesions. Using various experimental approaches, we further demonstrated that the knockdown of E-cadherin expression elevated free cytoplasmic and nuclear ß-catenin and enhanced androgen-induced transcription and cell growth. Intriguingly, pathological changes representing prostatic epithelial cell denudation and increased apoptosis accompanied the above PIN lesions. The essential role of E-cadherin in maintaining prostatic epithelial integrity and organization was further demonstrated using organoid culture approaches. To directly assess the role of loss of E-cadherin in prostate tumor progression, we generated a new mouse model with bigenic Cdh1 and Pten deletion in prostate epithelium. Early onset, aggressive tumor phenotypes presented in the compound mice. Strikingly, goblet cell metaplasia was observed, intermixed within prostatic tumor lesions of the compound mice. This study provides multiple lines of novel evidence demonstrating a comprehensive role of E-cadherin in maintaining epithelial integrity during the course of prostate oncogenic transformation, tumor initiation and progression.


Asunto(s)
Antígenos CD/metabolismo , Cadherinas/metabolismo , Transformación Celular Neoplásica/patología , Neoplasia Intraepitelial Prostática/patología , Neoplasias de la Próstata/patología , Animales , Antígenos CD/genética , Cadherinas/genética , Línea Celular Tumoral , Proliferación Celular , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Células Epiteliales , Epitelio , Células HEK293 , Humanos , Masculino , Ratones , Ratones Transgénicos , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Cultivo Primario de Células , Próstata/citología , Próstata/patología , Neoplasia Intraepitelial Prostática/genética , Neoplasias de la Próstata/genética , ARN Interferente Pequeño , beta Catenina/genética , beta Catenina/metabolismo
14.
Oncogene ; 38(38): 6507-6520, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31358900

RESUMEN

Recent genome analysis of human prostate cancers demonstrated that both AR gene amplification and TP53 mutation are among the most frequently observed alterations in advanced prostate cancer. However, the biological role of these dual genetic alterations in prostate tumorigenesis is largely unknown. In addition, there are no biologically relevant models that can be used to assess the molecular mechanisms for these genetic abnormalities. Here, we report a novel mouse model, in which elevated transgenic AR expression and Trp53 deletion occur simultaneously in mouse prostatic epithelium to mimic human prostate cancer cells. These compound mice developed an earlier onset of high-grade prostatic intraepithelial neoplasia and accelerated prostate tumors in comparison with mice harboring only the AR transgene. Histological analysis showed prostatic sarcomatoid and basaloid carcinomas with massive squamous differentiation in the above compound mice. RNA-sequencing analyses identified a robust enrichment of the signature genes for human prostatic basal cell carcinomas in the above prostate tumors. Master regulator analysis revealed SOX2 as a transcriptional regulator in prostatic basal cell tumors. Elevated expression of SOX2 and its downstream target genes were detected in prostatic tumors of the compound mice. Chromatin immunoprecipitation analyses implicate a coregulatory role of AR and SOX2 in the expression of prostatic basal cell signature genes. Our data demonstrate a critical role of SOX2 in prostate tumorigenesis and provide mechanistic insight into prostate tumor aggressiveness and progression mediated by aberrant AR and p53 signaling pathways.


Asunto(s)
Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Receptores Androgénicos/fisiología , Factores de Transcripción SOXB1/fisiología , Proteína p53 Supresora de Tumor/genética , Animales , Transformación Celular Neoplásica/genética , Progresión de la Enfermedad , Eliminación de Gen , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Invasividad Neoplásica , Receptores Androgénicos/genética , Transducción de Señal/genética , Transcriptoma
15.
PLoS One ; 14(1): e0211153, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30677079

RESUMEN

The tumor suppressor p16Ink4a, encoded by the INK4a gene, is an inhibitor of cyclin D-dependent kinases 4 and 6, CDK4 and CDK6. This inhibition prevents the phosphorylation of the retinoblastoma protein (pRb), resulting in cellular senescence through inhibition of E2F-mediated transcription of S phase genes required for cell proliferation. The p16Ink4a plays an important role in tumor suppression, whereby its deletion, mutation, or epigenetic silencing is a frequently observed genetic alteration in prostate cancer. To assess its roles and related molecular mechanisms in prostate cancer initiation and progression, we generated a mouse model with conditional deletion of p16Ink4a in prostatic luminal epithelium. The mice underwent oncogenic transformation and developed prostatic intraepithelial neoplasia (PIN) from eight months of age, but failed to develop prostatic tumors. Given the prevalence of aberrant androgen signaling pathways in prostate cancer initiation and progression, we then generated R26hARL/wt:p16L/L: PB-Cre4 compound mice, in which conditional expression of the human AR transgene and deletion of p16Ink4a co-occur in prostatic luminal epithelial cells. While R26hARL/wt:PB-Cre4 mice showed no visible pathological changes, R26hARL/wt:p16L/L: PB-Cre4 compound mice displayed an early onset of high-grade PIN (HGPIN), prostatic carcinoma, and metastatic lesions. Strikingly, we observed tumors resembling human sarcomatoid carcinoma with intermixed focal regions of signet ring cell carcinoma (SRCC) in the prostates of the compound mice. Further characterization of these tumors showed they were of luminal epithelial cell origin, and featured characteristics of epithelial to mesenchymal transition (EMT) with enhanced proliferative and invasive capabilities. Our results not only implicate a biological role for AR expression and p16Ink4a deletion in the pathogenesis of prostatic SRCC, but also provide a new and unique genetically engineered mouse (GEM) model for investigating the molecular mechanisms for SRCC development.


Asunto(s)
Carcinoma de Células en Anillo de Sello , Inhibidor p16 de la Quinasa Dependiente de Ciclina/deficiencia , Eliminación de Gen , Neoplasia Intraepitelial Prostática , Neoplasias de la Próstata , Receptores Androgénicos , Animales , Carcinoma de Células en Anillo de Sello/genética , Carcinoma de Células en Anillo de Sello/metabolismo , Carcinoma de Células en Anillo de Sello/patología , Proliferación Celular/genética , Transición Epitelial-Mesenquimal/genética , Humanos , Masculino , Ratones , Ratones Transgénicos , Invasividad Neoplásica/genética , Neoplasia Intraepitelial Prostática/genética , Neoplasia Intraepitelial Prostática/metabolismo , Neoplasia Intraepitelial Prostática/patología , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo
16.
Cancer Res ; 79(5): 982-993, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30563890

RESUMEN

Triple-negative breast cancer (TNBC) commonly develops resistance to chemotherapy, yet markers predictive of chemoresistance in this disease are lacking. Here, we define WNT10B-dependent biomarkers for ß-CATENIN/HMGA2/EZH2 signaling predictive of reduced relapse-free survival. Concordant expression of HMGA2 and EZH2 proteins is observed in MMTV-Wnt10bLacZ transgenic mice during metastasis, and Hmga2 haploinsufficiency decreased EZH2 protein expression, repressing lung metastasis. A novel autoregulatory loop interdependent on HMGA2 and EZH2 expression is essential for ß-CATENIN/TCF-4/LEF-1 transcription. Mechanistically, both HMGA2 and EZH2 displaced Groucho/TLE1 from TCF-4 and served as gatekeepers for K49 acetylation on ß-CATENIN, which is essential for transcription. In addition, we discovered that HMGA2-EZH2 interacts with the PRC2 complex. Absence of HMGA2 or EZH2 expression or chemical inhibition of Wnt signaling in a chemoresistant patient-derived xenograft (PDX) model of TNBC abolished visceral metastasis, repressing AXIN2, MYC, EZH2, and HMGA2 expression in vivo. Combinatorial therapy of a WNT inhibitor with doxorubicin synergistically activated apoptosis in vitro, resensitized PDX-derived cells to doxorubicin, and repressed lung metastasis in vivo. We propose that targeting the WNT10B biomarker network will provide improved outcomes for TNBC. SIGNIFICANCE: These findings reveal targeting the WNT signaling pathway as a potential therapeutic strategy in triple-negative breast cancer.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/5/982/F1.large.jpg.


Asunto(s)
Proteínas Proto-Oncogénicas/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/metabolismo , Proteínas Wnt/metabolismo , Acetilación , Alelos , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Biomarcadores de Tumor , Compuestos Bicíclicos Heterocíclicos con Puentes/administración & dosificación , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Línea Celular Tumoral , Doxorrubicina/administración & dosificación , Doxorrubicina/farmacología , Resistencia a Antineoplásicos , Sinergismo Farmacológico , Proteína Potenciadora del Homólogo Zeste 2/biosíntesis , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Femenino , Proteína HMGA2/biosíntesis , Proteína HMGA2/genética , Proteína HMGA2/metabolismo , Humanos , Factor de Unión 1 al Potenciador Linfoide , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Metástasis de la Neoplasia , Pirimidinonas/administración & dosificación , Pirimidinonas/farmacología , Tasa de Supervivencia , Factor de Transcripción 4 , Neoplasias de la Mama Triple Negativas/genética , beta Catenina/metabolismo
17.
ILAR J ; 59(1): 66-79, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30535284

RESUMEN

Advancements in technology and digitization have ushered in novel ways of enhancing tissue-based research via digital microscopy and image analysis. Whole slide imaging scanners enable digitization of histology slides to be stored in virtual slide repositories and to be viewed via computers instead of microscopes. Easier and faster sharing of histologic images for teaching and consultation, improved storage and preservation of quality of stained slides, and annotation of features of interest in the digital slides are just a few of the advantages of this technology. Combined with the development of software for digital image analysis, digital slides further pave the way for the development of tools that extract quantitative data from tissue-based studies. This review introduces digital microscopy and pathology, and addresses technical and scientific considerations in slide scanning, quantitative image analysis, and slide repositories. It also highlights the current state of the technology and factors that need to be taken into account to insure optimal utility, including preanalytical considerations and the importance of involving a pathologist in all major steps along the digital microscopy and pathology workflow.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Microscopía/métodos , Animales , Aprendizaje Profundo , Humanos , Programas Informáticos
18.
ILAR J ; 59(1): 29-39, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30476141

RESUMEN

The need for international collaboration in rodent pathology has evolved since the 1970s and was initially driven by the new field of toxicologic pathology. First initiated by the World Health Organization's International Agency for Research on Cancer for rodents, it has evolved to include pathology of the major species (rats, mice, guinea pigs, nonhuman primates, pigs, dogs, fish, rabbits) used in medical research, safety assessment, and mouse pathology. The collaborative effort today is driven by the needs of the regulatory agencies in multiple countries, and by needs of research involving genetically engineered animals, for "basic" research and for more translational preclinical models of human disease. These efforts led to the establishment of an international rodent pathology nomenclature program. Since that time, multiple collaborations for standardization of laboratory animal pathology nomenclature and diagnostic criteria have been developed, and just a few are described herein. Recently, approaches to a nomenclature that is amenable to sophisticated computation have been made available and implemented for large-scale programs in functional genomics and aging. Most terminologies continue to evolve as the science of human and veterinary pathology continues to develop, but standardization and successful implementation remain critical for scientific communication now as ever in the history of veterinary nosology.


Asunto(s)
Animales de Laboratorio , Animales , Investigación Biomédica , Perros , Cobayas , Humanos , Ratones , Conejos , Ratas , Terminología como Asunto
19.
Oncogene ; 37(29): 4046-4054, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29695833

RESUMEN

The receptor tyrosine kinase Ret, a key gain-of-function mutated oncoprotein in thyroid carcinomas, has recently been implicated in other cancer types. While Ret copy number gains and mutations have been reported at low frequencies in breast tumors, we and others have reported that Ret is overexpressed in about 40% of human tumors and this correlates with poor patient prognosis. Ret activation regulates numerous intracellular pathways related to proliferation and inflammation, but it is not known whether abnormal Ret expression is sufficient to induce mammary carcinomas. Using a novel doxycycline-inducible transgenic mouse model with the MMTV promoter controlling Ret expression, we show that overexpression of wild-type Ret in the mammary epithelium produces mammary tumors, displaying a morphology that recapitulates characteristics of human luminal breast tumors. Ret-evoked tumors are estrogen receptor positive and negative for progesterone receptor. Moreover, tumors rapidly regress after doxycycline withdrawal, indicating that Ret is the driving oncoprotein. Using next-generation sequencing, we examined the levels of transcripts in these tumors, confirming a luminal signature. Ret-evoked tumors have been passaged in mice and used to test novel therapeutic approaches. Importantly, we have determined that tumors are resistant to endocrine therapy, but respond successfully to treatment with a Ret kinase inhibitor. Our data provide the first compelling evidence for an oncogenic role of non-mutated Ret in the mammary gland and are an incentive for clinical development of Ret as a cancer biomarker and therapeutic target.


Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias Mamarias Animales/metabolismo , Proteínas Proto-Oncogénicas c-ret/metabolismo , Animales , Línea Celular Tumoral , Femenino , Humanos , Células MCF-7 , Glándulas Mamarias Humanas/metabolismo , Ratones , Ratones Transgénicos/metabolismo , Receptores de Progesterona/metabolismo
20.
Front Cell Dev Biol ; 6: 35, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29651417

RESUMEN

Mouse models and genetically engineered mouse models (GEMM) are essential experimental tools for the understanding molecular mechanisms within complex biological systems. GEMM are especially useful for inferencing phenocopy information to genetic human diseases such as breast cancer. Human breast cancer modeling in mice most commonly employs mammary epithelial-specific promoters to investigate gene function(s) and, in particular, putative oncogenes. Models are specifically useful in the mammary epithelial cell in the context of the complete mammary gland environment. Gene targeted knockout mice including conditional targeting to specific mammary cells can reveal developmental defects in mammary organogenesis and demonstrate the importance of putative tumor suppressor genes. Some of these models demonstrate a non-traditional type of tumor suppression which involves interplay between the tumor susceptible cell and its host/environment. These GEMM help to reveal the processes of cancer progression beyond those intrinsic to cancer cells. Furthermore, the, analysis of mouse models requires appropriate consideration of mouse strain, background, and environmental factors. In this review, we compare aging-related factors in mouse models for breast cancer. We introduce databases of GEMM attributes and colony functional variations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA