Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Phys Chem Au ; 4(4): 385-392, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39069981

RESUMEN

Water and ice are routinely studied with X-rays to reveal their diverse structures and anomalous properties. We employ a hybrid collisional-radiative/molecular-dynamics method to explore how femtosecond X-ray pulses interact with hexagonal ice. We find that ice makes a phase transition into a crystalline plasma where its initial structure is maintained up to tens of femtoseconds. The ultrafast melting process occurs anisotropically, where different geometric configurations of the structure melt on different time scales. The transient state and anisotropic melting of crystals can be captured by X-ray diffraction, which impacts any study of crystalline structures probed by femtosecond X-ray lasers.

2.
J Chem Phys ; 160(18)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38726930

RESUMEN

We describe a method to compute photon-matter interaction and atomic dynamics with x-ray lasers using a hybrid code based on classical molecular dynamics and collisional-radiative calculations. The forces between the atoms are dynamically determined based on changes to their electronic occupations and the formation of a free electron cloud created from the irradiation of photons in the x-ray spectrum. The rapid transition from neutral solid matter to dense plasma phase allows the use of screened potentials, reducing the number of non-bonded interactions. In combination with parallelization through domain decomposition, the hybrid code handles large-scale molecular dynamics and ionization. This method is applicable for large enough samples (solids, liquids, proteins, viruses, atomic clusters, and crystals) that, when exposed to an x-ray laser pulse, turn into a plasma in the first few femtoseconds of the interaction. We present four examples demonstrating the applicability of the method. We investigate the non-thermal heating and scattering of bulk water and damage-induced dynamics of a protein crystal using an x-ray pump-probe scheme. In both cases, we compare to the experimental data. For single particle imaging, we simulate the ultrafast dynamics of a methane cluster exposed to a femtosecond x-ray laser. In the context of coherent diffractive imaging, we study the fragmentation as given by an x-ray pump-probe setup to understand the evolution of radiation damage in the time range of hundreds of femtoseconds.

3.
Phys Rev Lett ; 130(17): 173201, 2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37172237

RESUMEN

We demonstrate that x-ray fluorescence emission, which cannot maintain a stationary interference pattern, can be used to obtain images of structures by recording photon-photon correlations in the manner of the stellar intensity interferometry of Hanbury Brown and Twiss. This is achieved utilizing femtosecond-duration pulses of a hard x-ray free-electron laser to generate the emission in exposures comparable to the coherence time of the fluorescence. Iterative phasing of the photon correlation map generated a model-free real-space image of the structure of the emitters. Since fluorescence can dominate coherent scattering, this may enable imaging uncrystallised macromolecules.

4.
Phys Rev E ; 107(1-2): 015205, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36797944

RESUMEN

Saturable absorption is a nonlinear effect where a material's ability to absorb light is frustrated due to a high influx of photons and the creation of electron vacancies. Experimentally induced saturable absorption in copper revealed a reduction in the temporal duration of transmitted x-ray laser pulses, but a detailed account of changes in opacity and emergence of resonances is still missing. In this computational work, we employ nonlocal thermodynamic equilibrium plasma simulations to study the interaction of femtosecond x rays and copper. Following the onset of frustrated absorption, we find that a K-M resonant transition occurring at highly charged states turns copper opaque again. The changes in absorption generate a transient transparent window responsible for the shortened transmission signal. We also propose using fluorescence induced by the incident beam as an alternative source to achieve shorter x-ray pulses. Intense femtosecond x rays are valuable to probe the structure and dynamics of biological samples or to reach extreme states of matter. Shortened pulses could be relevant for emerging imaging techniques.

5.
ACS Nanosci Au ; 2(2): 119-127, 2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37101662

RESUMEN

A nanopore is a tool in single-molecule sensing biotechnology that offers label-free identification with high throughput. Nanopores have been successfully applied to sequence DNA and show potential in the study of proteins. Nevertheless, the task remains challenging due to the large variability in size, charges, and folds of proteins. Miniproteins have a small number of residues, limited secondary structure, and stable tertiary structure, which can offer a systematic way to reduce complexity. In this computational work, we theoretically evaluated sensing two miniproteins found in the human body using a silicon nitride nanopore. We employed molecular dynamics methods to compute occupied-pore ionic current magnitudes and electronic structure calculations to obtain interaction strengths between pore wall and miniprotein. From the interaction strength, we derived dwell times using a mix of combinatorics and numerical solutions. This latter approach circumvents typical computational demands needed to simulate translocation events using molecular dynamics. We focused on two miniproteins potentially difficult to distinguish owing to their isotropic geometry, similar number of residues, and overall comparable structure. We found that the occupied-pore current magnitudes not to vary significantly, but their dwell times differ by 1 order of magnitude. Together, these results suggest a successful identification protocol for similar miniproteins.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...