Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Science ; 337(6090): 96-100, 2012 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-22628558

RESUMEN

Pyruvate constitutes a critical branch point in cellular carbon metabolism. We have identified two proteins, Mpc1 and Mpc2, as essential for mitochondrial pyruvate transport in yeast, Drosophila, and humans. Mpc1 and Mpc2 associate to form an ~150-kilodalton complex in the inner mitochondrial membrane. Yeast and Drosophila mutants lacking MPC1 display impaired pyruvate metabolism, with an accumulation of upstream metabolites and a depletion of tricarboxylic acid cycle intermediates. Loss of yeast Mpc1 results in defective mitochondrial pyruvate uptake, and silencing of MPC1 or MPC2 in mammalian cells impairs pyruvate oxidation. A point mutation in MPC1 provides resistance to a known inhibitor of the mitochondrial pyruvate carrier. Human genetic studies of three families with children suffering from lactic acidosis and hyperpyruvatemia revealed a causal locus that mapped to MPC1, changing single amino acids that are conserved throughout eukaryotes. These data demonstrate that Mpc1 and Mpc2 form an essential part of the mitochondrial pyruvate carrier.


Asunto(s)
Proteínas de Transporte de Anión/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Ácido Pirúvico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Aminoácidos/metabolismo , Animales , Proteínas de Transporte de Anión/química , Proteínas de Transporte de Anión/genética , Transporte Biológico , Metabolismo de los Hidratos de Carbono , Ciclo del Ácido Cítrico , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/química , Drosophila melanogaster/genética , Humanos , Metabolómica , Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Datos de Secuencia Molecular , Transportadores de Ácidos Monocarboxílicos , Oxidación-Reducción , Mutación Puntual , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
2.
Sci Signal ; 5(209): ra9, 2012 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-22296835

RESUMEN

In Saccharomyces cerevisiae, phosphorylation of Ugp1 by either of the yeast PASK family protein kinases (yPASK), Psk1 or Psk2, directs this metabolic enzyme to deliver glucose to the periphery for synthesis of the cell wall. However, we isolated PSK1 and PSK2 in a high-copy suppressor screen of a temperature-sensitive mutant of target of rapamycin 2 (TOR2). Posttranslational activation of yPASK, either by cell integrity stress or by growth on nonfermentative carbon sources, also suppressed the growth defect resulting from tor2 mutation. Although suppression of the tor2 mutant growth phenotype by activation of the kinase activity of yPASK required phosphorylation of the metabolic enzyme Ugp1 on serine 11, this resulted in the formation of a complex that induced Rho1 activation, rather than required the glucose partitioning function of Ugp1. In addition to phosphorylated Ugp1, this complex contained Rom2, a Rho1 guanine nucleotide exchange factor, and Ssd1, an mRNA-binding protein. Activation of yPASK-dependent Ugp1 phosphorylation, therefore, enables two processes that are required for cell growth and stress resistance: synthesis of the cell wall through partitioning glucose to the periphery and the formation of the signaling complex with Rom2 and Ssd1 to promote Rho1-dependent polarized cell growth. This complex may integrate metabolic and signaling responses required for cell growth and survival in suboptimal conditions.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Transducción de Señal/fisiología , Proteínas de Unión al GTP rho/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Activación Enzimática/genética , Glucosa/genética , Glucosa/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Mutación , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas/genética , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Unión al GTP rho/genética
3.
Semin Cell Dev Biol ; 23(6): 626-30, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22245833

RESUMEN

Recent data suggests that PAS kinase acts as a signal integrator to adjust metabolic behavior in response to nutrient conditions. Specifically, PAS kinase controls the partitioning of nutrient resources between the myriad of possible fates. In this capacity, PAS kinase elicits a pro-growth program, which includes both signaling and metabolic control, both in yeast and in mammals. We propose that, like other kinases possessing these properties-AMPK and TOR, PAS kinase might be target for therapy of diabetes, obesity and cancer.


Asunto(s)
Fenómenos Fisiológicos de la Nutrición , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Humanos , Enfermedades Metabólicas/metabolismo , Ratones , Proteínas Serina-Treonina Quinasas/química , Saccharomyces cerevisiae/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
4.
Proc Natl Acad Sci U S A ; 104(39): 15466-71, 2007 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-17878307

RESUMEN

The metabolic syndrome, a complex set of phenotypes typically associated with obesity and diabetes, is an increasing threat to global public health. Fundamentally, the metabolic syndrome is caused by a failure to properly sense and respond to cellular metabolic cues. We studied the role of the cellular metabolic sensor PAS kinase (PASK) in the pathogenesis of metabolic disease by using PASK(-/-) mice. We identified tissue-specific metabolic phenotypes caused by PASK deletion consistent with its role as a metabolic sensor. Specifically, PASK(-/-) mice exhibited impaired glucose-stimulated insulin secretion in pancreatic beta-cells, altered triglyceride storage in liver, and increased metabolic rate in skeletal muscle. Further, PASK deletion caused nearly complete protection from the deleterious effects of a high-fat diet including obesity and insulin resistance. We also demonstrate that these cellular effects, increased rate of oxidative metabolism and ATP production, occur in cultured cells. We therefore hypothesize that PASK acts in a cell-autonomous manner to maintain cellular energy homeostasis and is a potential therapeutic target for metabolic disease.


Asunto(s)
Glucosa/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/fisiología , Animales , Línea Celular , Eliminación de Gen , Insulina/metabolismo , Secreción de Insulina , Islotes Pancreáticos/metabolismo , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Músculo Esquelético/metabolismo , Oxígeno/metabolismo , Ratas , Triglicéridos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...