Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Indian J Microbiol ; 64(2): 492-499, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39010997

RESUMEN

The production of coconut tree seedlings is an important step in the production process, as it substantially affects the productive performance of the adult plant, and the way of obtaining seedlings directly reflects the added costs. To minimize costs, the introduction of biostimulants can be considered a viable and sustainable technology. This study aimed to evaluate the effects of applying Bacillus cereus in promoting growth and reducing the costs of producing Brazilgreen dwarf coconut seedlings. The study has two stages, the first was an experiment carried out in a commercial nursery in the state of Pará-Brazil. The design was completely randomized, with two treatments: control with water (100% mineral fertilization) and B. cereus inoculation (50% mineral fertilization), with 10 replicates each. Biometric parameters and the quality of seedlings were evaluated. In the second stage, the production of stimulated seedlings was compared to that of commercial seedlings, and the effective operating cost (COE) and the total operating cost (TOC) were determined. Biostimulation with B. cereus promotes the growth of coconut tree seedlings, increases seedling quality, and reduces nursery time. In addition, the cost of production is reduced by 10%. Thus, microbial technology is a positive strategy for the production of Brazilian green dwarf coconut seedlings. Using B. cereus can guarantee obtaining seedlings with high performance and at a lower cost. These results may favor obtaining adult plants with high productivity. Supplementary Information: The online version contains supplementary material available at 10.1007/s12088-023-01163-9.

2.
Front Microbiol ; 15: 1352792, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38827154

RESUMEN

Introduction: The microbial-induced restoration of ferruginous crusts (canga), which partially cover iron deposits and host unique ecosystems, is a promising alternative for reducing the environmental impacts of the iron mining industry. Methods: To investigate the potential of microbial action to accelerate the reduction and oxidation of iron in substrates rich in hematite and goethite, four different microbial treatments (water only as a control - W; culture medium only - MO; medium + microbial consortium - MI; medium + microbial consortium + soluble iron - MIC) were periodically applied to induce iron dissolution and subsequent precipitation. Except for W, all the treatments resulted in the formation of biocemented blocks. Results: MO and MI treatments resulted in significant goethite dissolution, followed by precipitation of iron oxyhydroxides and an iron sulfate phase, due to iron oxidation, in addition to the preservation of microfossils. In the MIC treatment, biofilms were identified, but with few mineralogical changes in the iron-rich particles, indicating less iron cycling compared to the MO or MI treatment. Regarding microbial diversity, iron-reducing families, such as Enterobacteriaceae, were found in all microbially treated substrates. Discussion: However, the presence of Bacillaceae indicates the importance of fermentative bacteria in accelerating the dissolution of iron minerals. The acceleration of iron cycling was also promoted by microorganisms that couple nitrate reduction with Fe(II) oxidation. These findings demonstrate a sustainable and streamlined opportunity for restoration in mining areas.

3.
Microorganisms ; 11(2)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36838412

RESUMEN

Lateritic duricrusts cover iron ore deposits and form spatially restricted, unique canga ecosystems endangered by mining. Iron cycling, i.e., the dissolution and subsequent precipitation of iron, is able to restitute canga duricrusts, generating new habitats for endangered biota in post-mining landscapes. As iron-reducing bacteria can accelerate this iron cycling, we aim to retrieve microbial enrichment cultures suitable to mediate the large-scale restoration of cangas. For that, we collected water and sediment samples from the Carajás National Forest and cultivated the iron-reducing microorganisms therein using a specific medium. We measured the potential to reduce iron using ferrozine assays, growth rate and metabolic activity. Six out of seven enrichment cultures effectively reduced iron, showing that different environments harbor iron-reducing bacteria. The most promising enrichment cultures were obtained from environments with repeated flooding and drying cycles, i.e., periodically inundated grasslands and a plateau of an iron mining waste pile characterized by frequent soaking. Selected enrichment cultures contained iron-reducing and fermenting bacteria, such as Serratia and Enterobacter. We found higher iron-reducing potential in enrichment cultures with a higher cell density and microorganism diversity. The obtained enrichment cultures should be tested for canga restoration to generate benefits for biodiversity and contribute to more sustainable iron mining in the region.

4.
Front Plant Sci ; 12: 649487, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34721445

RESUMEN

Coconut production in the Amazon requires the knowledge and development of sustainable technologies to alleviate the detrimental effects of inorganic chemical fertilizers and intensive farming practices. In this study, we investigated the effects of plant growth-promoting rhizobacteria (PGPR) isolated from coconut seedlings on nutrient use efficiency (NUE) and physiological mechanisms related to biomass accumulation of seedlings grown with reduced inorganic fertilizer levels. Of the 96 PGPR isolates tested on rice plants, the isolate Bacillus cereus (UFRABC40) was selected, as it resulted in the most significant gain in growth variables. In a commercial coconut tree nursery, we subjected seedlings to two treatments, both with seven replications: control 100% NPK chemical fertilizer (CF) and B. cereus + 50% NPK CF. The results indicated that the inoculation increased phytohormone levels [190% indole acetic acid (IAA), 31% gibberellic acid GA3, and 17% gibberellic acid GA4] and leaf gas exchange [48% by assimilation of CO2 (A), 35% stomatal conductance to water vapor (gs), 33% transpiration, and 57% instantaneous carboxylation efficiency] in leaves. Furthermore, growth parameters (shoot, root, and total dry weight, height, and diameter) and macro- and micronutrient levels (95% N, 44% P, 92% K, 103 Ca, 46% Fe, 84% B) were improved. Our results show the potential ability of strain Bacillus cereus UFRABC40 to promote the growth performance of coconut seedlings under decreased application of inorganic fertilizers. The application of microbial-based products in coconut seedling production systems improves plants' physiological performance and the efficiency of nutrient use.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...