Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(17): e36786, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39286185

RESUMEN

Remdesivir, a C-nucleotide prodrug binds to the viral RNA-dependent-RNA polymerase (RdRp) and inhibits the viral replication by terminating RNA transcription prematurely. It is reported in literature that interaction between the C-1'ß-CN moiety of Remdesivir (RDV) and the Ser861 residue in RdRp enzyme, causes a delayed chain termination during the RNA replication process and is one of the important aspect of its mechanism of action. In the pursuance of increasing the biological activity of RDV and enhancing the SAR studies, against RNA viruses, we have designed its fourteen C1'ß substituted analogs, 10 -23 bearing 4/5-membered heterocyclic rings. The docking and 100 ns molecular dynamics (MD) simulations of 10-23 to the RdRp protein (PDB ID: 7L1F) revealed important interactions between 2',3'-diol, oxo group of phosphoramidate, nitrogen residues of heterocyclic rings of synthetic molecules with Arg555, Arg553, Ser759, Cys622, Asn691, Asp623 amino acid residues of protein. The docking score of 2-ethylbutyl ((S)-(((2R,3S,4R,5R)-5-(4-aminopyrrolo[2,1-f][1,2,4]triazin-7-yl)-3,4-dihydroxy-5-(1H-1,2,3-triazol-4-yl)tetrahydrofuran-2-yl)methoxy)(phenoxy)phosphoryl)-L-alaninate, 11 was found to be the higher than RDV among 14 new compounds i.e. -5.20 kcal/mol. Out of 3 compounds, 10, 12 and 13 submitted for MD simulations and Molecular Mechanics Poisson-Boltzmann Surface Area (MMPBSA) analysis, trifluoro-oxadiazole derivative, 13 showed higher binding energy as compared to Remdesivir. The predicted ADMET properties of 14 compounds showed their potential for being drug candidates. The present study suggests that substitution at the C1'ß position by 4/5-membered rings plays an important role in the interactions between nucleoside/tide and target protein.

2.
J Org Chem ; 88(13): 9105-9122, 2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37276453

RESUMEN

Studies suggest that the 1'ß-CN moiety in remdesivir sterically clashes with the Ser861 residue of the RNA-dependent-RNA polymerase (RdRp), causing a delayed chain termination in the RNA replication process. Replacing C1'ß-CN with 5-membered heterocycles such as tetrazoles, oxadiazoles, and triazoles can augment the inhibitory activity and pharmacokinetic profile of C-nucleotides. Synthesis of tetrazole-, triazole-, and oxadiazole-integrated C1' analogues of remdesivir was attempted using general synthetic routes. The final compounds 26, 28, and 29 did not inhibit viral replication; however, the synthetic intermediates, i.e., 27 and 50, exhibited an IC90 = 14.1 µM each. The trifluoromethyl-substituted 1,2,4-oxadiazole 59 showed an IC90 of 33.5 µM. This work adds to the growing evidence of the beneficial medicinal impact of C1,1'-disubstituted C-nucleotides.


Asunto(s)
Alanina , Nucleótidos , Adenosina Monofosfato , Oxadiazoles/farmacología , Oxadiazoles/química
3.
ACS Omega ; 8(9): 8415-8426, 2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36910947

RESUMEN

There is a continuing demand of new inhibitors of HIV-1 Integrase (HIV-1 IN) due to mutations of HIV-1. This study aims to develop the synthesis of 3,6-diaryl 7-azaindoles and introspect the role of aryl groups on the strand transfer (ST) inhibition of HIV-1 IN. An efficient and chemo-selective one-pot method is established for the synthesis of the unexplored diverse C3 → C6 diaryl 7-azaindoles starting from 6-chloro-3-iodo-N-protected 7-azaindoles. Here we report Pd2dba3/SPhos catalyzed synthesis of eight selective C3 monoaryl 7-azaindoles (10a-h) and eight C3,C6-diaryl 7-azaindoles (11a-f, 12a,b) with yields in the ranges of 67-93% and 43-88% respectively. The synthesized derivatives inhibit the strand transfer (ST) activity of HIV-1 IN enzyme at 10 µM dose with 11d and 11f exhibiting %ST inhibitions of 72% and 71%, respectively. SAR studies indicate the para-substitution on the C3 aryl ring and C6 aryl is essential for enhanced %ST inhibition. 11b,c, 11e-f, and 12b showed lower cytotoxicity (IC50 > 200 µM) against TZM-bl cells. Molecular docking of the diaryl 7-azaindoles and Raltegravir (RAL), to the PFV-integrase revealed favorable binding interactions.

4.
J Org Chem ; 86(2): 1330-1356, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33356264

RESUMEN

Sequence-specific C-arylation strategies have important applications in medicinal and material research. These strategies allow C-C bond formations in a regioselective manner to synthesize large molecular libraries for studying structure-activity profiles. The past decade has seen the development of single C-C bond forming reactions using various transition-metal catalysts, cryogenic metalation strategies, and metal-free methods. Sequential arylations of heterocycles allow for the formation of multiaryl derivatives and are a preferred choice over de novo synthetic routes. This perspective sheds light on recent strategic advances to develop various sequential synthetic routes for the multiarylation of heteroarenes. This perspective addresses many challenges in optimizing sequential routes with respect to catalysts, reaction parameters, and various strategies adopted to obtain diversely arylated products.

5.
J Org Chem ; 84(21): 14015-14029, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31522500

RESUMEN

Pd-catalyzed synthesis of multi-aryl 7-azaindoles using sequential arylation of 5-bromo-6-chloro-3-iodo-1-methyl-1H-pyrrolo[2,3-b] pyridine is established. Four diverse aryl groups are installed in a chemo-selective fashion providing a general method to synthesize sterically encumbered compounds and extended 7-azaindoles in 48-95% yields. Three-selective sequential arylations at C-3, C-5, and C-6 via Suzuki-Miyaura cross-coupling followed by direct C-2 arylation using a Pd catalyst and AgOTf as an additive are highlights of the present work. Interestingly, the tetra-aryl 7-azaindoles showed aggregate-induced emission (AIE) making it potentially useful as fluorophores in OLEDs, sensors, and bio-imaging tools.

6.
Luminescence ; 31(3): 738-45, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26333657

RESUMEN

The Schiff base 4-hydroxy-benzoic acid (4-diethylamino-2-hydroxy-benzylidene) hydrazide (SL) was synthesized and characterized. Its antioxidant activity was evaluated using 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging action. Being a potent antioxidant its binding ability to the transport protein bovine serum albumin (BSA) was studied using fluorescence quenching and circular dichroism (CD) studies. The binding distance has been calculated by fluorescence resonance energy transfer (FRET) to be 1.85 Å and the Stern-Volmer quenching constant has been calculated to be (3.23 ± 0.45) × 10(5) M(-1). Quantum chemical analysis was carried out for the Schiff base using DFT with B3LYP and 6-311G** and related to the experimentally obtained results. For a deeper understanding of the mechanism of the interaction, the experimental data were complemented by protein-Schiff base docking calculations using Argus Lab.


Asunto(s)
Antioxidantes/química , Etilaminas/química , Transferencia Resonante de Energía de Fluorescencia , Hidrazinas/química , Simulación del Acoplamiento Molecular , Teoría Cuántica , Albúmina Sérica Bovina/química , Animales , Antioxidantes/síntesis química , Bovinos , Dicroismo Circular , Etilaminas/síntesis química , Fluorescencia , Hidrazinas/síntesis química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...