Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Microbiol Resour Announc ; 13(3): e0102523, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38299840

RESUMEN

We report the complete genome sequence of deformed wing virus and black queen cell virus isolated from Argentinean's honeybees. These sequence data will be valuable for future research on the viral variants present in the country and the development of strategies to control the spread of these viruses in apiaries.

2.
PLoS One ; 18(2): e0281317, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36730262

RESUMEN

Bovine leukemia virus (BLV) is a retrovirus that causes malignant B-cell lymphoma in up to ten-percent of infected cattle. To date, the mechanisms of BLV linked to malignant transformation remain elusive. Although BLV-encoded miRNAs have been associated with the regulation of different genes involved in oncogenic pathways, this association has not been evaluated in cattle naturally infected with BLV. The objective of this study was to determine the relative expression of BLV-encoded miRNA blv-miR-b4-3p, the host analogous miRNA bo-miR-29a and a couple of potential target mRNAs (HBP-1 and PXDN, with anti-tumorigenic function in B-cells), in cattle naturally infected with BLV compared to uninfected animals (control group). We observed that PXDN was significantly downregulated in BLV-infected cattle (P = 0.03). Considering the similar expression of endogenous bo-miR-29a in both animal groups, the downregulation of PXDN in BLV-naturally infected cattle could be linked to blv-miR-b4-3p expression in these animals. Knowing that PXDN is involved in anti-tumoral pathways in B-cells, the results presented here suggest that blv-miR-b4-3p might be involved in BLV tumorigenesis during natural infection with BLV in cattle.


Asunto(s)
Leucosis Bovina Enzoótica , Virus de la Leucemia Bovina , Linfoma de Células B , MicroARNs , Neoplasias , Animales , Bovinos , MicroARNs/genética , Virus de la Leucemia Bovina/genética , Linfocitos B , Leucosis Bovina Enzoótica/genética
3.
Microbiol Spectr ; 10(4): e0128822, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-35862962

RESUMEN

Mycolic acids, a hallmark of the genus Mycobacterium, are unique branched long-chain fatty acids produced by a complex biosynthetic pathway. Due to their essentiality and involvement in various aspects of mycobacterial pathogenesis, the synthesis of mycolic acids-and the identification of the enzymes involved-is a valuable target for drug development. Although most of the core pathway is comparable between species, subtle structure differences lead to different structures delineating the mycolic acid repertoire of tuberculous and some nontuberculous mycobacteria. We here report the characterization of an α'-mycolic acid-deficient Mycobacterium smegmatis mutant obtained by chemical mutagenesis. Whole-genome sequencing and bioinformatic analysis identified a premature stop codon in MSMEG_4301, encoding an acyl-CoA synthetase. Orthologs of MSMEG_4301 are present in all mycobacterial species containing α'-mycolic acids. Deletion of the Mycobacterium abscessus ortholog MAB_1915 abrogated synthesis of α'-mycolic acids; likewise, deletion of MSMEG_4301 in an otherwise wild-type M. smegmatis background also caused loss of these short mycolates. IMPORTANCE Mycobacterium abscessus is a nontuberculous mycobacterium responsible for an increasing number of hard-to-treat infections due to the impervious nature of its cell envelope, a natural barrier to several antibiotics. Mycolic acids are key components of that envelope; thus, their synthesis is a valuable target for drug development. Our results identify the first enzyme involved in α'-mycolic acids, a short-chain member of mycolic acids, loss of which greatly affects growth of this opportunistic pathogen.


Asunto(s)
Mycobacterium abscessus , Mycobacterium , Vías Biosintéticas/genética , Ácidos Grasos/metabolismo , Mycobacterium/metabolismo , Mycobacterium abscessus/genética , Mycobacterium abscessus/metabolismo , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Ácidos Micólicos/metabolismo , Micobacterias no Tuberculosas
4.
Science ; 363(6428): 702, 2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-30765559
5.
BMC Genomics ; 19(1): 142, 2018 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-29439661

RESUMEN

BACKGROUND: Bovine leukemia virus (BLV) infection is omnipresent in dairy herds causing direct economic losses due to trade restrictions and lymphosarcoma-related deaths. Milk production drops and increase in the culling rate are also relevant and usually neglected. The BLV provirus persists throughout a lifetime and an inter-individual variation is observed in the level of infection (LI) in vivo. High LI is strongly correlated with disease progression and BLV transmission among herd mates. In a context of high prevalence, classical control strategies are economically prohibitive. Alternatively, host genomics studies aiming to dissect loci associated with LI are potentially useful tools for genetic selection programs tending to abrogate the viral spreading. The LI was measured through the proviral load (PVL) set-point and white blood cells (WBC) counts. The goals of this work were to gain insight into the contribution of SNPs (bovine 50KSNP panel) on LI variability and to identify genomics regions underlying this trait. RESULTS: We quantified anti-p24 response and total leukocytes count in peripheral blood from 1800 cows and used these to select 800 individuals with extreme phenotypes in WBCs and PVL. Two case-control genomic association studies using linear mixed models (LMMs) considering population stratification were performed. The proportion of the variance captured by all QC-passed SNPs represented 0.63 (SE ± 0.14) of the phenotypic variance for PVL and 0.56 (SE ± 0.15) for WBCs. Overall, significant associations (Bonferroni's corrected -log10p > 5.94) were shared for both phenotypes by 24 SNPs within the Bovine MHC. Founder haplotypes were used to measure the linkage disequilibrium (LD) extent (r2 = 0.22 ± 0.27 at inter-SNP distance of 25-50 kb). The SNPs and LD blocks indicated genes potentially associated with LI in infected cows: i.e. relevant immune response related genes (DQA1, DRB3, BOLA-A, LTA, LTB, TNF, IER3, GRP111, CRISP1), several genes involved in cell cytoskeletal reorganization (CD2AP, PKHD1, FLOT1, TUBB5) and modelling of the extracellular matrix (TRAM2, TNXB). Host transcription factors (TFs) were also highlighted (TFAP2D; ABT1, GCM1, PRRC2A). CONCLUSIONS: Data obtained represent a step forward to understand the biology of BLV-bovine interaction, and provide genetic information potentially applicable to selective breeding programs.


Asunto(s)
Enfermedades de los Bovinos/genética , Leucosis Bovina Enzoótica/genética , Genómica/métodos , Polimorfismo de Nucleótido Simple , Animales , Bovinos , Enfermedades de los Bovinos/virología , Leucosis Bovina Enzoótica/virología , Femenino , Haplotipos , Virus de la Leucemia Bovina/fisiología , Leucocitos/metabolismo , Leucocitos/virología , Desequilibrio de Ligamiento , Provirus/fisiología , Factores de Transcripción/genética , Carga Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA