Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 7: 12905, 2016 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-27671143

RESUMEN

The identity of active species in supported gold catalysts for low temperature carbon monoxide oxidation remains an unsettled debate. With large amounts of experimental evidence supporting theories of either gold nanoparticles or sub-nm gold species being active, it was recently proposed that a size-dependent activity hierarchy should exist. Here we study the diverging catalytic behaviours after heat treatment of Au/FeOx materials prepared via co-precipitation and deposition precipitation methods. After ruling out any support effects, the gold particle size distributions in different catalysts are quantitatively studied using aberration corrected scanning transmission electron microscopy (STEM). A counting protocol is developed to reveal the true particle size distribution from HAADF-STEM images, which reliably includes all the gold species present. Correlation of the populations of the various gold species present with catalysis results demonstrate that a size-dependent activity hierarchy must exist in the Au/FeOx catalyst.

2.
Science ; 351(6276): 965-8, 2016 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-26917769

RESUMEN

The direct synthesis of hydrogen peroxide (H2O2) from H2 and O2 represents a potentially atom-efficient alternative to the current industrial indirect process. We show that the addition of tin to palladium catalysts coupled with an appropriate heat treatment cycle switches off the sequential hydrogenation and decomposition reactions, enabling selectivities of >95% toward H2O2. This effect arises from a tin oxide surface layer that encapsulates small Pd-rich particles while leaving larger Pd-Sn alloy particles exposed. We show that this effect is a general feature for oxide-supported Pd catalysts containing an appropriate second metal oxide component, and we set out the design principles for producing high-selectivity Pd-based catalysts for direct H2O2 production that do not contain gold.

3.
Angew Chem Int Ed Engl ; 53(9): 2381-4, 2014 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-24474182

RESUMEN

The direct synthesis of hydrogen peroxide offers a potentially green route to the production of this important commodity chemical. Early studies showed that Pd is a suitable catalyst, but recent work indicated that the addition of Au enhances the activity and selectivity significantly. The addition of a third metal using impregnation as a facile preparation method was thus investigated. The addition of a small amount of Pt to a CeO2-supported AuPd (weight ratio of 1:1) catalyst significantly enhanced the activity in the direct synthesis of H2O2 and decreased the non-desired over-hydrogenation and decomposition reactions. The addition of Pt to the AuPd nanoparticles influenced the surface composition, thus leading to the marked effects that were observed on the catalytic formation of hydrogen peroxide. In addition, an experimental approach that can help to identify the optimal nominal ternary alloy compositions for this reaction is demonstrated.

4.
Acc Chem Res ; 47(3): 845-54, 2014 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-24175914

RESUMEN

Hydrogen peroxide is a widely used chemical but is not very efficient to make in smaller than industrial scale. It is an important commodity chemical used for bleaching, disinfection, and chemical manufacture. At present, manufacturers use an indirect process in which anthraquinones are sequentially hydrogenated and oxidized in a manner that hydrogen and oxygen are never mixed. However, this process is only economic at a very large scale producing a concentrated product. For many years, the identification of a direct process has been a research goal because it could operate at the point of need, producing hydrogen peroxide at the required concentration for its applications. Research on this topic has been ongoing for about 100 years. Until the last 10 years, catalyst design was solely directed at using supported palladium nanoparticles. These catalysts require the use of bromide and acid to arrest peroxide decomposition, since palladium is a very active catalyst for hydrogen peroxide hydrogenation. Recently, chemists have shown that supported gold nanoparticles are active when gold is alloyed with palladium because this leads to a significant synergistic enhancement in activity and importantly selectivity. Crucially, bimetallic gold-based catalysts do not require the addition of bromide and acids, but with carbon dioxide as a diluent its solubility in the reaction media acts as an in situ acid promoter, which represents a greener approach for peroxide synthesis. The gold catalysts can operate under intrinsically safe conditions using dilute hydrogen and oxygen, yet these catalysts are so active that they can generate peroxide at commercially significant rates. The major problem associated with the direct synthesis of hydrogen peroxide concerns the selectivity of hydrogen usage, since in the indirect process this factor has been finely tuned over decades of operation. In this Account, we discuss how the gold-palladium bimetallic catalysts have active sites for the synthesis and hydrogenation of hydrogen peroxide that are different, in contrast to monometallic palladium in which synthesis and hydrogenation operate at the same sites. Through treatment of the support with acids prior to the deposition of the gold-palladium bimetallic particles, we can obtain a catalyst that can make hydrogen peroxide at a very high rate without decomposing or hydrogenating the product. This innovation opens up the way to design improved catalysts for the direct synthesis process, and these possibilities are described in this Account.

5.
Faraday Discuss ; 162: 201-12, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24015585

RESUMEN

Industrial catalysts for the oxidation of methanol to formaldehyde consist of iron molybdate [Fe2(MoO4)3]. Using a variety of techniques we have previously shown that the surface of these catalysts is segregated in MoO3, and in order to understand the relationship between surface structure and reactivity for these systems we have begun a surface science study of this system using model, single crystal oxides. Model catalysts of molybdenum oxide nanoparticles and films on an Fe3O4(111) single crystal were fabricated by the hot-filament metal oxide deposition technique (HFMOD), where molybdenum oxides were produced using a molybdenum filament heated in an oxygen atmosphere. Low energy electron diffraction (LEED), X-ray photoelectron spectroscopy (XPS), and scanning tunnelling microscopy (STM) have been used to investigate molybdenum oxide nanoparticles and films deposited on Fe3O4(111). The molybdenum oxide film forms in the highest oxidation state, +6, and is remarkably stable to thermal treatment, remaining on the surface to at least 973 K. However, above approximately 573 K cation mixing begins to occur, forming an iron molybdate structure, but the process is strongly Mo coverage dependent.

6.
Chem Commun (Camb) ; 49(74): 8223-5, 2013 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-23924973

RESUMEN

Gold, the archetypal noble metal, is usually associated with an inhibition of surface reactivity by site blocking. In this paper however, we show that on Cu(100) surfaces a gold adlayer can actually increase the extent of reaction with the substrate.

8.
ACS Nano ; 6(8): 6600-13, 2012 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-22769042

RESUMEN

We report a convenient excess anion modification and post-reduction step to the impregnation method which permits the reproducible preparation of supported bimetallic AuPd nanoparticles having a tight particle size distribution comparable to that found for sol-immobilization materials but without the complication of ligands adsorbed on the particle surface. The advantageous features of the modified impregnation materials compared to those made by conventional impregnation include a smaller average particle size, an optimized random alloy composition, and improved compositional uniformity from particle-to-particle resulting in higher activity and stability compared to the catalysts prepared using both conventional impregnation and sol immobilization methods. Detailed STEM combined with EDX analyses of individual particles have revealed that an increase in anion concentration increases the gold content of individual particles in the resultant catalyst, thus providing a method to control/tune the composition of the nanoalloy particles. The improved activity and stability characteristics of these new catalysts are demonstrated using (i) the direct synthesis of hydrogen peroxide and (ii) the solvent-free aerobic oxidation of benzyl alcohol as case studies.


Asunto(s)
Alcohol Bencilo/química , Cristalización/métodos , Oro/química , Nanopartículas del Metal/química , Paladio/química , Aniones , Catálisis , Ligandos , Sustancias Macromoleculares/química , Ensayo de Materiales , Conformación Molecular , Oxidación-Reducción , Tamaño de la Partícula , Propiedades de Superficie
10.
Nat Chem ; 4(2): 134-9, 2012 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-22270646

RESUMEN

The one-step transformation of C(7)-C(12) linear alkanes into more valuable oxygenates provides heterogeneous catalysis with a major challenge. In evaluating the potential of a classic mixed-metal-oxide catalyst, we demonstrate new insights into the reactivity of adsorbed oxygen species. During the aerobic gas-phase conversion of n-decane over iron molybdate, the product distribution correlates with the condition of the catalyst. Selectivity to oxygenated aromatics peaks at 350 °C while the catalyst is in a fully oxidized state, whereas decene and aromatic hydrocarbons dominate at higher temperatures. The high-temperature performance is consistent with an underlying redox mechanism in which lattice oxide ions abstract hydrogen from decane. At lower temperatures, the formation of oxygenated aromatics competes with the formation of CO(2), implying that electrophilic adsorbed oxygen is involved in both reactions. We suggest, therefore, that so-called non-selective oxygen is capable of insertion into carbon-rich surface intermediates to generate aromatic partial oxidation products.


Asunto(s)
Alcanos/química , Oxígeno/química , Catálisis , Oxidación-Reducción , Difracción de Polvo
11.
Phys Chem Chem Phys ; 13(38): 17395-404, 2011 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-21881631

RESUMEN

Several niobium phosphate phases have been prepared, fully characterized and tested as catalysts for the selective oxidation of ethane to ethylene. Three distinct niobium phosphate catalysts were prepared, and each was comprised predominantly of a different bulk phase, namely Nb(2)P(4)O(15), NbOPO(4) and Nb(1.91)P(2.82)O(12). All of the niobium phosphate catalysts showed high selectivity towards ethylene, but the best catalyst was Nb(1.91)P(2.82)O(12), which was produced from the reduction of niobium oxide phosphate (NbOPO(4)) by hydrogen. It was particularly selective for ethylene, giving ca. 95% selectivity at 5% conversion, decreasing to ca. 90% at 15% conversion, and only produced low levels of carbon oxides. It was also determined that the only primary product from ethane oxidation over this catalyst was ethylene. Catalyst activity also increased with time-on-line, and this behaviour was ascribed to an increase of the concentration of the Nb(1.91)P(2.82)O(12) phase, as partially transformed NbOPO(4), formed during preparation, was converted to Nb(1.91)P(2.82)O(12) during use. Catalysts with predominant phases of Nb(2)P(4)O(15) and NbOPO(4) also showed appreciable activity and selectivities to ethylene with values around 75% and 85% respectively at 5% ethane conversion. The presence of phosphorous is required to achieve high ethylene selectivity, as orthorhombic and monoclinic Nb(2)O(5) catalysts showed similar activity, but displayed selectivities to ethylene that were <20% under the same reaction conditions. To the best of our knowledge, this is the first time that niobium phosphates have been shown to be highly selective catalysts for the oxidation of ethane to ethylene, and demonstrates that they are worthy candidates for further study.

12.
Nat Chem ; 3(7): 551-6, 2011 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-21697877

RESUMEN

Metal nanoparticles that comprise a few hundred to several thousand atoms have many applications in areas such as photonics, sensing, medicine and catalysis. Colloidal methods have proven particularly suitable for producing small nanoparticles with controlled morphologies and excellent catalytic properties. Ligands are necessary to stabilize nanoparticles during synthesis, but once the particles have been deposited on a substrate the presence of the ligands is detrimental for catalytic activity. Previous methods for ligand removal have typically involved thermal and oxidative treatments, which can affect the size or morphology of the particles, in turn altering their catalytic activity. Here, we report a procedure to effectively remove the ligands without affecting particle morphology, which enhances the surface exposure of the nanoparticles and their catalytic activity over a range of reactions. This may lead to developments of nanoparticles prepared by colloidal methods for applications in fields such as environmental protection and energy production.


Asunto(s)
Oro/química , Ligandos , Nanopartículas del Metal/química , Coloides/química , Técnicas Químicas Combinatorias/métodos , Paladio/química , Tamaño de la Partícula , Propiedades de Superficie
13.
Dalton Trans ; 40(15): 3927-37, 2011 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-21258674

RESUMEN

The reaction of glycerol with urea to form glycerol carbonate is mostly reported in the patent literature and to date there have been very few fundamental studies of the reaction mechanism. Furthermore, most previous studies have involved homogeneous catalysts whereas the identification of heterogeneous catalysts for this reaction would be highly beneficial. This is a very attractive reaction that utilises two inexpensive and readily available raw materials in a chemical cycle that overall, results in the chemical fixation of CO(2). This reaction also provides a route to up-grade waste glycerol produced in large quantities during the production of biodiesel. Previous reports are largely based on the utilisation of high concentrations of metal sulfates or oxides, which suffer from low intrinsic activity and selectivity. We have identified heterogeneous catalysts based on gallium, zinc, and gold supported on a range of oxides and the zeolite ZSM-5, which facilitate this reaction. The addition of each component to ZSM-5 leads to an increase in the reaction yield towards glycerol carbonate, but supported gold catalysts display the highest activity. For gold-based catalysts, MgO is the support of choice. Catalysts have been characterised by XRD, TEM, STEM and XPS, and the reaction has been studied with time-on-line analysis of products via a combination of FT-IR spectroscopy, HPLC, (13)C NMR and GC-MS analysis to evaluate the reaction pathway. Our proposed mechanism suggests that glycerol carbonate forms via the cyclization of a 2,3-dihydroxypropyl carbamate and that a subsequent reaction of glycerol carbonate with urea yields the carbamate of glycerol carbonate. Stability and reactivity studies indicate that consecutive reactions of glycerol carbonate can limit the selectivity achieved and reaction conditions can be selected to avoid this. The effect of the catalyst in the proposed mechanism is discussed.

14.
Phys Chem Chem Phys ; 13(7): 2528-38, 2011 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-21152570

RESUMEN

The oxidation of CO by Au/Fe(2)O(3) and Au/ZnO catalysts is compared in the very early stages of the reaction using a temporal analysis of products (TAP) reactor. For Au/Fe(2)O(3) pre-dosing the catalyst with (18)O labelled water gives an unexpected evolution order for the labelled CO(2) product with the C(18)O(2) emerging first, whereas no temporal differentiation is found for Au/ZnO. High pressure XPS experiments are then used to show that CO bond cleavage does occur for model catalysts consisting of Au particles deposited on iron oxide films but not when deposited on ZnO films. DFT calculations, show that this observation requires carbon monoxide to dissociate in such a way that cleavage of the CO bond occurs along with dynamically co-adsorbed oxygen so that the overall process of Au oxidation and CO dissociation is energetically favourable. Our results show that for Au/Fe(2)O(3) there is a pathway for CO oxidation that involves atomic C and O surface species which operates along side the bicarbonate mechanism that is widely discussed in the literature. However, this minor pathway is absent for Au/ZnO.


Asunto(s)
Monóxido de Carbono/química , Oro/química , Nanopartículas del Metal/química , Temperatura , Catálisis , Compuestos Férricos/química , Modelos Moleculares , Conformación Molecular , Oxidación-Reducción , Presión , Teoría Cuántica
15.
Langmuir ; 26(21): 16221-5, 2010 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-20446709

RESUMEN

Although the reactive sticking probability of oxygen at Ag(111) is of the order of 10(-6) at 295 K, ammonia oxidation is a facile process at low temperatures. A combination of quantitative analysis of photoelectron spectra together with high resolution electron energy loss spectroscopy provides kinetic and spectroscopic evidence for an ammonia-dioxygen complex, stable at 100 K, as the key intermediate. The reactive oxygen O(2)(s) is a transient dioxygen precursor of the unreactive peroxo state O(2)(δ-)(a). It is present as a complex when ammonia and dioxygen are coadsorbed at low temperature (100 K) with evidence from both O(1s) and energy loss spectra. Hydroxyl and amide/imide species are formed, followed by dehydroxylation and "oxide" formation at 260 K. This is a further example (zinc was the first) of how an sp-metal, where dioxygen bond cleavage is slow, provides an alternative pathway via a transient dioxygen state to catalytic oxidation through precursor assisted dioxygen bond cleavage. Whether it is a general characteristic of sp-metals remains to be established. Comparisons are made with the homogeneously catalyzed Gif reaction, the selective oxidation of hydrocarbons by dioxygen.


Asunto(s)
Amoníaco/química , Oxígeno/química , Plata/química , Catálisis , Oxidación-Reducción , Propiedades de Superficie , Temperatura
16.
Phys Chem Chem Phys ; 12(10): 2488-92, 2010 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-20449363

RESUMEN

The direct synthesis of hydrogen peroxide from H(2) and O(2) has been studied using a high activity AuPd/TiO(2) catalyst. In particular, the effect of variation in the reaction conditions on the productivity of hydrogen peroxide formation is investigated in detail. The effect of H(2)/O(2) molar ratio, temperature, total pressure and solvent composition has been studied and optimised conditions identified. In addition, the effect of carrying out the synthesis reaction in the presence of hydrogen peroxide is investigated and the competing reactions of hydrogen peroxide formation, decomposition and hydrogenation are discussed and optimal operating conditions are identified.


Asunto(s)
Oro/química , Peróxido de Hidrógeno/síntesis química , Paladio/química , Titanio/química , Catálisis , Hidrógeno/química , Peróxido de Hidrógeno/química , Oxígeno/química
17.
Langmuir ; 26(21): 16568-77, 2010 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-20462255

RESUMEN

We report the preparation of Au-Pd nanocrystalline catalysts supported on activated carbon prepared via a sol-immobilization technique and explore their use for the direct synthesis of hydrogen peroxide and the oxidation of benzyl alcohol. In particular, we examine the synthesis of a systematic set of Au-Pd colloidal nanoparticles having a range of Au/Pd ratios. The catalysts have been structurally characterized using a combination of UV-visible spectroscopy, transmission electron microscopy, STEM HAADF/XEDS, and X-ray photoelectron spectroscopy. The Au-Pd nanoparticles are found in the majority of cases to be homogeneous alloys, although some variation is observed in the AuPd composition at high Pd/Au ratios. The optimum performance for the synthesis of hydrogen peroxide is observed for a catalyst having a Au/Pd 1:2 molar ratio. However, the competing hydrogenation reaction of hydrogen peroxide increases with increasing Pd content, although Pd alone is less effective than when Au is also present. Investigation of the oxidation of benzyl alcohol using these materials also shows that the optimum selective oxidation to the aldehyde occurs for the Au/Pd 1:2 molar ratio catalyst. These measured activity trends are discussed in terms of the structure and composition of the supported Au-Pd nanoparticles.


Asunto(s)
Alcohol Bencilo/síntesis química , Oro/química , Peróxido de Hidrógeno/síntesis química , Paladio/química , Aleaciones/síntesis química , Aleaciones/química , Alcohol Bencilo/química , Catálisis , Peróxido de Hidrógeno/química , Nanopartículas del Metal/química , Oxidación-Reducción , Tamaño de la Partícula , Propiedades de Superficie
18.
ACS Nano ; 4(4): 2228-32, 2010 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-20205410

RESUMEN

We report results relating to the thermal stability of nanoparticles and show a remarkable effect of nanostructuring of the metal. Au films are nanostructured by focused ion beam sputtering (FIB) to produce isolated areas of metal, which are imaged by atomic force microscopy (AFM). Images of the surface show that, if the islands are made small enough, the metal in the islands is lost by evaporation, whereas the nonfabricated areas outside are relatively stable and the nanoparticles remain present there.

19.
Phys Chem Chem Phys ; 11(46): 10899-907, 2009 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-19924324

RESUMEN

The reaction of hydrogen chloride gas with partially oxidised Cu(110) surfaces follows a different structural pathway than its reaction with a clean surface. In the latter case a c(2 x 2)Cl structure develops which is compressed in the [110] direction for chlorine atom concentrations greater than 5.5 x 10(14) cm(-2). In contrast, the presence of oxygen leads to the formation of linear "Cl-chains" orientated in the [100] direction which closely resemble those of bulk CuCl(2). These Cu(II) like structures are unstable at room temperature decomposing to form c(2 x 2)Cl. Using XPS and STM we have investigated the formation of the CuCl(2) like surface species and propose that it derives from the unusual reactivity of transient copper adatoms released from the p(2 x 1)O by the exothermic formation of water.

20.
ChemSusChem ; 2(12): 1145-51, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19830778

RESUMEN

Glycolic acid is an important chemical that has uses as a cleaning agent as well as a chemical intermediate. At present glycolic acid is manufactured from either chloroacetic acid or from formaldehyde hydrocyanation, both routes being nongreen and using nonsustainable resources. We investigate the possibility of producing glycolate from the oxidation of glycerol, a sustainable raw material. We show that by using 1 % wt Au/carbon catalysts prepared using a sol-immobilization method glycolate yields of ca. 60 % can be achieved, using hydrogen peroxide as oxidant in an autoclave reactor. We describe and discuss the reaction mechanism and consider the reaction conditions that maximize the formation of glycolate.


Asunto(s)
Glicerol/química , Glicolatos/síntesis química , Nanopartículas del Metal/química , Industria Química/métodos , Oro , Oxidación-Reducción , Paladio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...