Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Sci Rep ; 12(1): 21886, 2022 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-36535979

RESUMEN

Hepatocellular carcinoma (HCC) is an aggressive liver cancer with limited effective treatment options. In this study, we selected TLR agonists imiquimod (IMQ), gardiquimod (GARD), GS-9620 and DSR 6434, and a small molecule checkpoint inhibitor, BMS-202, for characterization of drug loading and release from radiopaque embolic beads (DC Bead LUMI) for potential use in image-guided transarterial embolization (TACE) of HCC. The maximum drug loading capacity and amount of drug released over time were determined by high performance liquid chromatography and compared with the commonly used anthracycline, doxorubicin hydrochloride (Dox). Maximum drug loading was 204.54 ± 3.87, 65.28 ± 3.09, 65.95 ± 6.96, 65.97 ± 1.54, and 148.05 ± 2.24 mg of drug per milliliter of DC Bead LUMI for Dox, GARD, DSR 6434, IMQ, and BMS-202, respectively. Fast loading and subsequent rapid release in saline were observed for IMQ, GARD, and DSR 6434. These drugs could also be partially removed from the beads by repeated washing with de-ionized water suggesting weak interaction with the beads. Aggregation of IMQ was observed in water and saline. GS-9620 partially decomposed in the solubilizing solution, so loading and release were not characterized. Compared to TLR agonists, slower loading and release were observed for Dox and BMS-202. Potential factors influencing drug loading into and release from DC Bead LUMI including steric hinderance, hydrophobicity, drug pKa, and the electrostatic nature of the beads are discussed. The maximum loading capacity of BMS-202 and Dox in DC Bead LUMI exceeded the maximum theoretical loading capacity of the beads expected from ionic interaction alone suggesting additional drug-bead or drug-drug interactions may play a role. Slightly more release was observed for BMS-202 at early time points followed by a slower release compared to Dox. Further study of these drug-bead combinations is warranted in search of new tools for locoregional delivery of immune-modulating agents for treatment of HCC via drug-eluting bead chemoembolization.


Asunto(s)
Carcinoma Hepatocelular , Quimioembolización Terapéutica , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/terapia , Quimioembolización Terapéutica/métodos , Doxorrubicina/química , Antibióticos Antineoplásicos/química , Microesferas
3.
Lasers Surg Med ; 54(7): 935-944, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35708124

RESUMEN

BACKGROUND/OBJECTIVES: Optical coherence tomography (OCT) uses low coherence interferometry to obtain depth-resolved tissue reflectivity profiles (M-mode) and transverse beam scanning to create images of two-dimensional tissue morphology (B-mode). Endoscopic OCT imaging probes typically employ proximal or distal mechanical beam scanning mechanisms that increase cost, complexity, and size. Here, we demonstrate in the gastrointestinal (GI) tracts of unsedated human patients, that a passive, single-fiber probe can be used to guide device placement, conduct device-tissue physical contact sensing, and obtain two-dimensional OCT images via M-to-B-mode conversion. MATERIALS AND METHODS: We designed and developed ultrasmall, manually scannable, side- and forward-viewing single fiber-optic probes that can capture M-mode OCT data. Side-viewing M-mode OCT probes were incorporated into brush biopsy devices designed to harvest the microbiome and forward-viewing M-mode OCT probes were integrated into devices that measure intestinal potential difference (IPD). The M-mode OCT probe-coupled devices were utilized in the GI tract in six unsedated patients in vivo. M-mode data were converted into B-mode images using an M-to-B-mode conversion algorithm. The effectiveness of physical contact sensing by the M-mode OCT probes was assessed by comparing the variances of the IPD values when the probe was in physical contact with the tissue versus when it was not. The capacity of forward- and side-viewing M-mode OCT probes to produce high-quality B-mode images was compared by computing the percentages of the M-to-B-mode images that showed close contact between the probe and the luminal surface. Passively scanned M-to-B-mode images were qualitatively compared to B-mode images obtained by mechanical scanning OCT tethered capsule endomicroscopy (TCE) imaging devices. RESULTS: The incorporation of M-mode OCT probes in these nonendoscopic GI devices safely and effectively enabled M-mode OCT imaging, facilitating real-time device placement guidance and contact sensing in vivo. Results showed that M-mode OCT contact sensing improved the variance of IPD measurements threefold and side-viewing probes increased M-to-B-mode image visibility by 10%. Images of the esophagus, stomach, and duodenum generated by the passively scanned probes and M-to-B-mode conversion were qualitatively superior to B-mode images obtained by mechanically scanning OCT TCE devices. CONCLUSION: These results show that passive, single optical fiber OCT probes can be effectively utilized for nonendoscopic device placement guidance, device contact sensing, and two-dimensional morphologic imaging in the human GI tract in vivo. Due to their small size, lower cost, and reduced complexity, these M-mode OCT probes may provide an easier avenue for the incorporation of OCT functionality into endoscopic/nonendoscopic devices.


Asunto(s)
Tecnología de Fibra Óptica , Tomografía de Coherencia Óptica , Biopsia , Endoscopios , Endoscopía , Humanos
4.
Int J Pharm ; 616: 121466, 2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35065205

RESUMEN

Cancer immunotherapy has yet to reach its full potential due in part to limited response rates and side effects inherent to systemic delivery of immune-modulating drugs. Local administration of immunotherapy using drug-eluting embolic (DEE) microspheres as drug delivery vehicles for direct infusion into tumor-feeding arteries might increase and prolong tumor drug concentrations and reduce systemic drug exposure, potentially improving the risk-to-benefit ratio of these agents. The purpose of this study was to evaluate the ability of four immune modulators affecting two different immune pathways to potentiate replication of immune cells from a woodchuck model of hepatocellular carcinoma. DSR 6434, a Toll-like receptor agonist, and BMS-202, a PD-L1 checkpoint inhibitor, induced immune cell replication and were successfully loaded into radiopaque DEE microspheres in high concentrations. Release of DSR 6434 from the DEE microspheres was rapid (t99% = 0.4 h) upon submersion in a physiologic saline solution while BMS-202 demonstrated a more sustained release profile (t99% = 17.9 h). These findings demonstrate the feasibility of controlled delivery of immune-modulating drugs via a local DEE microsphere delivery paradigm.


Asunto(s)
Carcinoma Hepatocelular , Quimioembolización Terapéutica , Neoplasias Hepáticas , Carcinoma Hepatocelular/patología , Quimioembolización Terapéutica/efectos adversos , Doxorrubicina , Humanos , Neoplasias Hepáticas/patología , Microesferas , Preparaciones Farmacéuticas
5.
Front Phys ; 92021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36382063

RESUMEN

Introduction: Diseases such as celiac disease, environmental enteric dysfunction, infectious gastroenteritis, type II diabetes and inflammatory bowel disease are associated with increased gut permeability. Dual sugar absorption tests, such as the lactulose to rhamnose ratio (L:R) test, are the current standard for measuring gut permeability. Although easy to administer in adults, the L:R test has a number of drawbacks. These include an inability to assess for spatial heterogeneity in gut permeability that may distinguish different disease severity or pathology, additional sample collection for immunoassays, and challenges in carrying out the test in certain populations such as infants and small children. Here, we demonstrate a minimally invasive probe for real-time localized gut permeability evaluation through gut potential difference (GPD) measurement. Materials and Methods: The probe has an outer diameter of 1.2 mm diameter and can be deployed in the gut of unsedated subjects via a transnasal introduction tube (TNIT) that is akin to an intestinal feeding tube. The GPD probe consists of an Ag/AgCl electrode, an optical probe and a perfusion channel all housed within a transparent sheath. Lactated Ringer's (LR) solution is pumped through the perfusion channel to provide ionic contact between the electrodes and the gut lining. The optical probe captures non-scanning (M-mode) OCT images to confirm electrode contact with the gut lining. A separate skin patch probe is placed over an abraded skin area to provide reference for the GPD measurements. Swine studies were conducted to validate the GPD probe. GPD in the duodenum was modulated by perfusing 45 ml of 45 mM glucose. Results: GPD values of -13.1 ± 2.8 mV were measured in the duodenum across four swine studies. The change in GPD in the duodenum with the addition of glucose was -10.5 ± 2.4 mV (p < 0.001). M-mode OCT images provided electrode-tissue contact information, which was vital in ascertaining the probe's proximity to the gut mucosa. Conclusion: We developed and demonstrated a minimally invasive method for investigating gastrointestinal permeability consisting of an image guided GPD probe that can be used in unsedated subjects.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...