Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Neural Plast ; 2016: 6021428, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26881119

RESUMEN

Perineuronal nets (PNNs) are extracellular molecules that form around neurons near the end of critical periods during development. They surround neuronal cell bodies and proximal dendrites. PNNs inhibit the formation of new connections and may concentrate around rapidly firing inhibitory interneurons. Previous work characterized the important role of perineuronal nets in plasticity in the visual system, amygdala, and spinal cord of rats. In this study, we use immunohistochemistry to survey the distribution of perineuronal nets in representative areas of the primate brain. We also document changes in PNN prevalence in these areas in animals of different ages. We found that PNNs are most prevalent in the cerebellar nuclei, surrounding >90% of the neurons there. They are much less prevalent in cerebral cortex, surrounding less than 10% of neurons in every area that we examined. The incidence of perineuronal nets around parvalbumin-positive neurons (putative fast-spiking interneurons) varies considerably between different areas in the brain. Our survey indicates that the presence of PNNs may not have a simple relationship with neural plasticity and may serve multiple functions in the central nervous system.


Asunto(s)
Acetilgalactosamina/análisis , Encéfalo/metabolismo , Matriz Extracelular/metabolismo , Plasticidad Neuronal , Neuronas/metabolismo , Animales , Encéfalo/citología , Proteínas de la Matriz Extracelular/metabolismo , Femenino , Macaca mulatta , Masculino , Neuronas/citología , Ratas , Médula Espinal/citología , Médula Espinal/metabolismo , Sinapsis/metabolismo
2.
PLoS One ; 9(3): e86154, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24603437

RESUMEN

Perineuronal nets (PNNs) accumulate around neurons near the end of developmental critical periods. PNNs are structures of the extracellular matrix which surround synaptic contacts and contain chondroitin sulfate proteoglycans. Previous studies suggest that the chondroitin sulfate chains of PNNs inhibit synaptic plasticity and thereby help end critical periods. PNNs surround a high proportion of neurons in the cerebellar nuclei. These PNNs form during approximately the same time that movements achieve normal accuracy. It is possible that PNNs in the cerebellar nuclei inhibit plasticity to maintain the synaptic organization that produces those accurate movements. We tested whether or not PNNs in a saccade-related part of the cerebellar nuclei maintain accurate saccade size by digesting a part of them in an adult monkey performing a task that changes saccade size (long term saccade adaptation). We use the enzyme Chondroitinase ABC to digest the glycosaminoglycan side chains of proteoglycans present in the majority of PNNs. We show that this manipulation does not result in faster, larger, or more persistent adaptation. Our result indicates that intact perineuronal nets around saccade-related neurons in the cerebellar nuclei are not important for maintaining long-term saccade gain.


Asunto(s)
Acetilgalactosamina/metabolismo , Núcleos Cerebelosos/fisiología , Red Nerviosa/fisiología , Movimientos Sacádicos/fisiología , Adaptación Ocular/fisiología , Adaptación Fisiológica/fisiología , Animales , Condroitina ABC Liasa/metabolismo , Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Matriz Extracelular/metabolismo , Matriz Extracelular/fisiología , Macaca mulatta , Masculino , Red Nerviosa/metabolismo , Plasticidad Neuronal/fisiología , Neuronas/metabolismo , Neuronas/fisiología , Factores de Tiempo
3.
J Neurochem ; 115(3): 654-66, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20731762

RESUMEN

At chemical synapses, synaptic cleft components interact with elements of the nerve terminal membrane to promote differentiation and regulate function. Laminins containing the ß2 subunit are key cleft components, and they act in part by binding the pore-forming subunit of a pre-synaptic voltage-gated calcium channel (Ca(v)α) (Nishimune et al. 2004). In this study, we identify Ca(v)α-associated intracellular proteins that may couple channel-anchoring to assembly or stabilization of neurotransmitter release sites called active zones. Using Ca(v)α-antibodies, we isolated a protein complex from Torpedo electric organ synapses, which resemble neuromuscular junctions but are easier to isolate in bulk. We identified 10 components of the complex: six cytoskeletal proteins (α2/ß2 spectrins, plectin 1, AHNAK/desmoyokin, dystrophin, and myosin 1), two active zone components (bassoon and piccolo), synaptic laminin, and a calcium channel ß subunit. Immunocytochemistry confirmed these proteins in electric organ synapses, and PCR analysis revealed their expression by developing mammalian motor neurons. Finally, we show that synaptic laminins also interact with pre-synaptic integrins containing the α3 subunit. Together with our previous finding that a distinct synaptic laminin interacts with SV2 on nerve terminals (Son et al. 2000), our results identify three paths by which synaptic cleft laminins can send developmentally important signals to nerve terminals.


Asunto(s)
Canales de Calcio/metabolismo , Proteínas del Citoesqueleto/metabolismo , Integrina alfa3/metabolismo , Laminina/metabolismo , Sinapsis/metabolismo , Animales , Axones/metabolismo , Caveolina 1/metabolismo , Electroforesis en Gel de Poliacrilamida , Inmunohistoquímica , Inmunoprecipitación , Ratones , Neuronas Motoras/metabolismo , Terminaciones Nerviosas/metabolismo , Unión Proteica , Conejos , Ratas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Torpedo/fisiología
4.
Nature ; 432(7017): 580-7, 2004 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-15577901

RESUMEN

Synapse formation requires the differentiation of a functional nerve terminal opposite a specialized postsynaptic membrane. Here, we show that laminin beta2, a component of the synaptic cleft at the neuromuscular junction, binds directly to calcium channels that are required for neurotransmitter release from motor nerve terminals. This interaction leads to clustering of channels, which in turn recruit other presynaptic components. Perturbation of this interaction in vivo results in disassembly of neurotransmitter release sites, resembling defects previously observed in an autoimmune neuromuscular disorder, Lambert-Eaton myasthenic syndrome. These results identify an extracellular ligand of the voltage-gated calcium channel as well as a new laminin receptor. They also suggest a model for the development of nerve terminals, and provide clues to the pathogenesis of a synaptic disease.


Asunto(s)
Canales de Calcio Tipo N/metabolismo , Laminina/metabolismo , Neuronas Motoras/citología , Neuronas Motoras/metabolismo , Sinapsis/metabolismo , Animales , Sitios de Unión , Canales de Calcio Tipo N/química , Canales de Calcio Tipo N/deficiencia , Canales de Calcio Tipo N/genética , Células Cultivadas , Laminina/química , Laminina/deficiencia , Laminina/genética , Ratones , Mutación/genética , Unión Neuromuscular/citología , Unión Neuromuscular/metabolismo , Neurotransmisores/metabolismo , Terminales Presinápticos/metabolismo , Unión Proteica , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Receptores de Laminina/metabolismo , Vesículas Sinápticas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...