Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Hum Genet ; 2023 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-36739343

RESUMEN

Reference population databases like the Genome Aggregation Database (gnomAD) have improved our ability to interpret the human genome. Variant frequencies and frequency-derived tools (such as depletion scores) have become fundamental to variant interpretation and the assessment of variant-gene-disease relationships. Clonal hematopoiesis (CH) obstructs variant interpretation as somatic variants that provide proliferative advantage will affect variant frequencies, depletion scores, and downstream filtering. Further, default filtering of variants or genes associated with CH risks filtering bona fide germline variants as variants associated with CH can also cause Mendelian conditions. Here, we provide our insights on interpreting population variant data in genes affected by clonal hematopoiesis, as well as recommendations for careful review of 36 established CH genes associated with neurodevelopmental conditions.

2.
Mol Syndromol ; 13(4): 337-342, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36158056

RESUMEN

Witteveen-Kolk syndrome (WITKOS; OMIM #613406) is a recently described, rare neurodevelopmental syndrome characterized by mild intellectual disability and a recognizable facial gestalt. WITKOS is caused by heterozygous loss-of-function variants in SIN3A. It shares some features with 15q24 deletion syndrome but to date has only been described in a limited number of patients mostly of Northern European ancestry. Here, we report the first patient with Hispanic ancestry to our knowledge diagnosed with WITKOS, who has a novel, truncating variant in the SIN3A gene. Clinical exome sequencing performed in-house using a custom bioinformatics pipeline identified a de novo heterozygous, nonsense variant in SIN3A, c.1015C>T (p.Gln339Ter) that has not been previously described in the literature. This 3-year-old boy with WITKOS demonstrated classic features including mild developmental delay and triangular facies with hypotelorism and deep-set, hooded eyes. This patient supports the currently described phenotype for WITKOS in more diverse populations.

3.
Genet Med ; 24(9): 1952-1966, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35916866

RESUMEN

PURPOSE: ZMYND8 encodes a multidomain protein that serves as a central interactive hub for coordinating critical roles in transcription regulation, chromatin remodeling, regulation of super-enhancers, DNA damage response and tumor suppression. We delineate a novel neurocognitive disorder caused by variants in the ZMYND8 gene. METHODS: An international collaboration, exome sequencing, molecular modeling, yeast two-hybrid assays, analysis of available transcriptomic data and a knockdown Drosophila model were used to characterize the ZMYND8 variants. RESULTS: ZMYND8 variants were identified in 11 unrelated individuals; 10 occurred de novo and one suspected de novo; 2 were truncating, 9 were missense, of which one was recurrent. The disorder is characterized by intellectual disability with variable cardiovascular, ophthalmologic and minor skeletal anomalies. Missense variants in the PWWP domain of ZMYND8 abolish the interaction with Drebrin and missense variants in the MYND domain disrupt the interaction with GATAD2A. ZMYND8 is broadly expressed across cell types in all brain regions and shows highest expression in the early stages of brain development. Neuronal knockdown of the DrosophilaZMYND8 ortholog results in decreased habituation learning, consistent with a role in cognitive function. CONCLUSION: We present genomic and functional evidence for disruption of ZMYND8 as a novel etiology of syndromic intellectual disability.


Asunto(s)
Discapacidad Intelectual , Trastornos del Neurodesarrollo , Encéfalo/metabolismo , Regulación de la Expresión Génica , Humanos , Discapacidad Intelectual/genética , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/metabolismo , Dominios Proteicos , Secuenciación del Exoma
4.
PLoS Genet ; 17(11): e1009599, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34807903

RESUMEN

microRNAs (miRNAs) are potent regulators of gene expression that function in a variety of developmental and physiological processes by dampening the expression of their target genes at a post-transcriptional level. In many gene regulatory networks (GRNs), miRNAs function in a switch-like manner whereby their expression and activity elicit a transition from one stable pattern of gene expression to a distinct, equally stable pattern required to define a nascent cell fate. While the importance of miRNAs that function in this capacity are clear, we have less of an understanding of the cellular factors and mechanisms that ensure the robustness of this form of regulatory bistability. In a screen to identify suppressors of temporal patterning phenotypes that result from ineffective miRNA-mediated target repression, we identified pqn-59, an ortholog of human UBAP2L, as a novel factor that antagonizes the activities of multiple heterochronic miRNAs. Specifically, we find that depletion of pqn-59 can restore normal development in animals with reduced lin-4 and let-7-family miRNA activity. Importantly, inactivation of pqn-59 is not sufficient to bypass the requirement of these regulatory RNAs within the heterochronic GRN. The pqn-59 gene encodes an abundant, cytoplasmically-localized, unstructured protein that harbors three essential "prion-like" domains. These domains exhibit LLPS properties in vitro and normally function to limit PQN-59 diffusion in the cytoplasm in vivo. Like human UBAP2L, PQN-59's localization becomes highly dynamic during stress conditions where it re-distributes to cytoplasmic stress granules and is important for their formation. Proteomic analysis of PQN-59 complexes from embryonic extracts indicates that PQN-59 and human UBAP2L interact with orthologous cellular components involved in RNA metabolism and promoting protein translation and that PQN-59 additionally interacts with proteins involved in transcription and intracellular transport. Finally, we demonstrate that pqn-59 depletion reduces protein translation and also results in the stabilization of several mature miRNAs (including those involved in temporal patterning). These data suggest that PQN-59 may ensure the bistability of some GRNs that require miRNA functions by promoting miRNA turnover and, like UBAP2L, enhancing protein translation.


Asunto(s)
Tipificación del Cuerpo/fisiología , Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/metabolismo , Péptidos y Proteínas de Señalización Intracelular/fisiología , MicroARNs/fisiología , Biosíntesis de Proteínas/fisiología , Gránulos de Estrés/metabolismo , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas Portadoras/metabolismo , Eliminación de Gen , Regulación de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular/genética , Procesamiento Postranscripcional del ARN
5.
Am J Med Genet A ; 185(12): 3728-3739, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34346154

RESUMEN

Kinesin super family (KIF) genes encode motor kinesins, a family of evolutionary conserved proteins, involved in intracellular trafficking of various cargoes. These proteins are critical for various physiological processes including neuron function and survival, ciliary function and ciliogenesis, and cell-cycle progression. Recent evidence suggests that alterations in motor kinesin genes can lead to a variety of human diseases, including monogenic disorders. Neuropathies, impaired higher brain functions, structural brain abnormalities and multiple congenital anomalies (i.e., renal, urogenital, and limb anomalies) can result from pathogenic variants in many KIF genes. We expand the phenotype associated with KIF4A variants from developmental delay and intellectual disability with or without epilepsy to a congenital anomaly phenotype with hydrocephalus and various brain anomalies at the more severe end of phenotypic manifestations. Additional anomalies of the kidneys and urinary tract, congenital lymphedema, eye, and dental anomalies seem to be variably associated and overlap with clinical signs observed in other kinesinopathies. Caution still applies to missense variants, but hopefully, future work will further establish genotype-phenotype correlations in a larger number of patients and functional studies may give further insights into the complex function of KIF4A.


Asunto(s)
Anomalías Múltiples/genética , Encéfalo/metabolismo , Cinesinas/genética , Anomalías Urogenitales/genética , Reflujo Vesicoureteral/genética , Anomalías Múltiples/patología , Encéfalo/anomalías , Encéfalo/patología , Epilepsia/genética , Epilepsia/patología , Femenino , Estudios de Asociación Genética , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Masculino , Mutación Missense/genética , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , Neuronas/metabolismo , Neuronas/patología , Fenotipo , Anomalías Urogenitales/patología , Reflujo Vesicoureteral/patología
6.
Genomics ; 113(4): 1895-1905, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33862179

RESUMEN

Non-canonical intronic variants are a poorly characterized yet highly prevalent class of alterations associated with Mendelian disorders. Here, we report the first RNA expression and splicing analysis from a family whose members carry a non-canonical splice variant in an intron of RPL11 (c.396 +3A>G). This mutation is causative for Diamond Blackfan Anemia (DBA) in this family despite incomplete penetrance and variable expressivity. Our analyses revealed a complex pattern of disruptions with many novel junctions of RPL11. These include an RPL11 transcript that is translated with a late stop codon in the 3' untranslated region (3'UTR) of the main isoform. We observed that RPL11 transcript abundance is comparable among carriers regardless of symptom severity. Interestingly, both the small and large ribosomal subunit transcripts were significantly overexpressed in individuals with a history of anemia in addition to congenital abnormalities. Finally, we discovered that coordinated expression between mitochondrial components and RPL11 was lost in all carriers, which may lead to variable expressivity. Overall, this study highlights the importance of RNA splicing and expression analyses in families for molecular characterization of Mendelian diseases.


Asunto(s)
Anemia de Diamond-Blackfan , Genes Mitocondriales , Proteínas Ribosómicas , Anemia de Diamond-Blackfan/genética , Humanos , Mutación , Empalme del ARN , Enfermedades Raras/genética , Proteínas Ribosómicas/genética
7.
Am J Med Genet A ; 182(8): 1923-1932, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32506774

RESUMEN

Baraitser-Winter cerebrofrontofacial syndrome (BWCS) is a rare, autosomal dominant condition that is characterized by intellectual disability, distinctive craniofacial features, structural brain abnormalities, seizures, microcephaly, hearing loss, and ocular colobomas. The first three cases were described in 1988 by Baraitser and Winter and included two siblings and an unrelated third patient. Subsequently, causative missense variants in the ACTB and ACTG1 genes were identified, with de novo occurrence in patients with the condition. Herein, we describe two adult siblings who were born to unaffected parents and who were diagnosed with BWCS in their fourth and sixth decade of life following exome sequencing performed for intellectual disability. We review the literature reports of adult patients with BWCS to document the clinical features and phenotypic variability that can occur later in life. This is the first molecularly confirmed report of germline mosaicism in BWCS and one of only a few reports to describe two BWCS patients belonging to the same family.


Asunto(s)
Anomalías Múltiples/diagnóstico , Actinas/genética , Anomalías Craneofaciales/diagnóstico , Epilepsia/diagnóstico , Discapacidad Intelectual/diagnóstico , Lisencefalia/diagnóstico , Anomalías Múltiples/genética , Anomalías Múltiples/patología , Adulto , Coloboma/diagnóstico , Coloboma/genética , Coloboma/patología , Anomalías Craneofaciales/genética , Anomalías Craneofaciales/patología , Epilepsia/genética , Epilepsia/patología , Facies , Femenino , Mutación de Línea Germinal/genética , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Lisencefalia/genética , Lisencefalia/patología , Masculino , Microcefalia/diagnóstico , Microcefalia/genética , Microcefalia/patología , Persona de Mediana Edad , Mosaicismo , Mutación Missense/genética , Hermanos
8.
Genet Med ; 22(3): 453-461, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31732716

RESUMEN

Gene sequencing panels are a powerful diagnostic tool for many clinical presentations associated with genetic disorders. Advances in DNA sequencing technology have made gene panels more economical, flexible, and efficient. Because the genes included on gene panels vary widely between laboratories in gene content (e.g., number, reason for inclusion, evidence level for gene-disease association) and technical completeness (e.g., depth of coverage), standards that address technical and clinical aspects of gene panels are needed. This document serves as a technical standard for laboratories designing, offering, and reporting gene panel testing. Although these principles can apply to multiple indications for genetic testing, the primary focus is on diagnostic gene panels (as opposed to carrier screening or predictive testing) with emphasis on technical considerations for the specific genes being tested. This technical standard specifically addresses the impact of gene panel content on clinical sensitivity, specificity, and validity-in the context of gene evidence for contribution to and strength of evidence for gene-disease association-as well as technical considerations such as sequencing limitations, presence of pseudogenes/gene families, mosaicism, transcript choice, detection of copy-number variants, reporting, and disclosure of assay limitations.


Asunto(s)
Pruebas Genéticas/normas , Genética Médica/normas , Secuenciación de Nucleótidos de Alto Rendimiento/normas , Técnicas de Diagnóstico Molecular/normas , Pruebas Genéticas/tendencias , Genética Médica/tendencias , Genómica/normas , Genómica/tendencias , Humanos , Laboratorios , Técnicas de Diagnóstico Molecular/tendencias , Mutación/genética , Estados Unidos
9.
Hum Mutat ; 40(7): 908-925, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30817854

RESUMEN

Pathogenic de novo variants in the X-linked gene SLC35A2 encoding the major Golgi-localized UDP-galactose transporter required for proper protein and lipid glycosylation cause a rare type of congenital disorder of glycosylation known as SLC35A2-congenital disorders of glycosylation (CDG; formerly CDG-IIm). To date, 29 unique de novo variants from 32 unrelated individuals have been described in the literature. The majority of affected individuals are primarily characterized by varying degrees of neurological impairments with or without skeletal abnormalities. Surprisingly, most affected individuals do not show abnormalities in serum transferrin N-glycosylation, a common biomarker for most types of CDG. Here we present data characterizing 30 individuals and add 26 new variants, the single largest study involving SLC35A2-CDG. The great majority of these individuals had normal transferrin glycosylation. In addition, expanding the molecular and clinical spectrum of this rare disorder, we developed a robust and reliable biochemical assay to assess SLC35A2-dependent UDP-galactose transport activity in primary fibroblasts. Finally, we show that transport activity is directly correlated to the ratio of wild-type to mutant alleles in fibroblasts from affected individuals.


Asunto(s)
Trastornos Congénitos de Glicosilación/genética , Proteínas de Transporte de Monosacáridos/genética , Proteínas de Transporte de Monosacáridos/metabolismo , Uridina Difosfato Galactosa/metabolismo , Animales , Biopsia , Células CHO , Células Cultivadas , Trastornos Congénitos de Glicosilación/metabolismo , Trastornos Congénitos de Glicosilación/patología , Cricetulus , Femenino , Humanos , Masculino , Mutación
10.
Am J Med Genet A ; 179(5): 792-796, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30773818

RESUMEN

The NONO gene encodes a nuclear protein involved in RNA metabolism. Hemizygous loss-of-function NONO variants have been associated with syndromic intellectual disability and with left ventricular noncompaction (LVNC). A two-year-old boy presented to the University of Utah's Penelope Undiagnosed Disease Program with developmental delay, nonfamilial features, relative macrocephaly, and dilated cardiomyopathy with LVNC and Ebstein anomaly. Brain MRI showed a thick corpus callosum, mild Chiari I malformation, and a flattened pituitary. Exome sequencing identified a novel intronic deletion (c.154+5_154+6delGT) in the NONO gene. Splicing studies demonstrated intron 4 read-through and the use of an alternative donor causing the frameshift p.Asn52Serfs*6. Family segregation analysis showed that the variant occurred de novo in the boy's unaffected mother. MRI and endocrine findings suggest that hypopituitarism may contribute to growth failure, abnormal thyroid hormone levels, cryptorchidism, or delayed puberty in patients with NONO-associated disease. Also, including this case LVNC has been observed in five out of eight patients, and this report also confirms an association between loss of NONO and Ebstein anomaly. In some cases, unrelated individuals share the same pathogenic NONO variants but do not all have clinically significant LVNC, suggesting that additional modifiers may contribute to cardiac phenotypes.


Asunto(s)
Proteínas de Unión al ADN/genética , Genes Ligados a X , Predisposición Genética a la Enfermedad , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Mutación , Fenotipo , Proteínas de Unión al ARN/genética , Preescolar , Análisis Mutacional de ADN , Exoma , Facies , Femenino , Estudios de Asociación Genética , Sitios Genéticos , Humanos , Imagen por Resonancia Magnética , Masculino , Polimorfismo de Nucleótido Simple , Síndrome
11.
JIMD Rep ; 43: 103-109, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-29923089

RESUMEN

Loss-of-function and hypomorphic ECHS1 variants are associated with mitochondrial short-chain enoyl-CoA hydratase deficiency, an inborn error of valine metabolism. We report an 8-year-old boy with developmental delay, ataxia, hemiplegia, and hearing loss with abnormalities in the basal ganglia. Biochemical studies were essentially normal except for a persistent mildly elevated CSF alanine. This patient demonstrates an intermediate phenotype between a Leigh-like, early-onset presentation and paroxysmal exercise-induced dyskinesia. Two novel ECHS1 variants (c.79T>G; p.Phe27Val and c.789_790del; p.Phe263fs) were identified via exome sequencing in the proband, and pathogenicity was confirmed by enzyme assay performed on patient fibroblasts. Neither of the ECHS1 variants detected in the child were present in the mother. However, due to nearby polymorphisms, it was possible to determine that p.Phe263fs occurred de novo on the maternal chromosome and that p.Phe27Val likely derived from the paternal chromosome. Nearby polymorphisms can help set phase of variants when only a single parent is available for testing or when an identified variant occurs de novo.

12.
Am J Med Genet A ; 176(4): 945-950, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29575629

RESUMEN

Connexin 26 (Cx26), encoded by the GJB2 gene, is a key protein involved in the formation of gap junctions in epithelial organs including the inner ear and palmoplantar epidermis. Pathogenic variants in GJB2 are responsible for approximately 50% of inherited sensorineural deafness. The majority of these variants are associated with autosomal recessive inheritance; however, rare reports of dominantly co-segregating variants have been published. Since we began offering GJB2 testing in 2003, only about 2% of detected GJB2 variants from our laboratory have been classified as dominant. Here we report three novel dominant GJB2 variants (p.Thr55Ala, p.Gln57_Pro58delinsHisSer, and p.Trp44Gly); two associated with syndromic sensorineural hearing loss and one with nonsyndromic hearing loss. In the kindred with the p.Thr55Ala variant, the proband and his father present with only leukonychia as a cutaneous finding of their syndromic hearing loss. This phenotype has been previously documented in conjunction with palmoplantar hyperkeratosis, but isolated leukonychia is a novel finding likely associated with the unique threonine to alanine change at codon 55 (other variants at this codon have been reported in cases of nonsyndromic hearing loss). This report contributes to the short list of GJB2 variants associated with autosomal dominant hearing loss, highlights the variability of skin and nail findings associated with such cases, and illustrates the occurrence of both syndromic and nonsyndromic presentations with changes in the same gene.


Asunto(s)
Conexina 26/genética , Sordera/genética , Genes Dominantes , Estudios de Asociación Genética , Variación Genética , Niño , Preescolar , Biología Computacional/métodos , Conexina 26/química , Sordera/diagnóstico , Femenino , Humanos , Patrón de Herencia , Masculino , Modelos Moleculares , Fenotipo , Conformación Proteica , Secuencias Repetidas en Tándem
13.
Am J Med Genet A ; 173(11): 3022-3028, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28941052

RESUMEN

De novo, germline variants in DNMT3A cause Tatton-Brown-Rahman syndrome (TBRS). This condition is characterized by overgrowth, distinctive facial appearance, and intellectual disability. Somatic DNMT3A variants frequently occur in hematologic malignances, particularly acute myeloid leukemia. The Arg882 residue is the most common site of somatic DNMT3A variants, and has also been altered in patients with TBRS. Here we present three additional patients with this disorder attributed to DNMT3A germline variants that disrupt the Arg882 codon, suggesting that this codon may be a germline mutation hotspot in this disorder. Furthermore, based on the investigation of previously reported variants in patients with TBRS, we found overlap in the spectrum of DNMT3A variants observed in this disorder and somatic variants in hematological malignancies.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/genética , Cara/fisiopatología , Neoplasias Hematológicas/genética , Discapacidad Intelectual/genética , Codón , ADN Metiltransferasa 3A , Femenino , Predisposición Genética a la Enfermedad , Mutación de Línea Germinal/genética , Neoplasias Hematológicas/patología , Humanos , Discapacidad Intelectual/patología , Masculino , Mutación , Fenotipo
14.
Am J Med Genet A ; 173(10): 2622-2627, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28742285

RESUMEN

Diamond-Blackfan anemia (DBA) is a group of clinically and genetically heterogeneous bone marrow failure disorders with or without congenital anomalies. Variable expressivity and incomplete penetrance have been observed within affected families. Diamond-Blackfan anemia-7 (DBA7), caused by heterozygous mutations in ribosomal protein L11 (RPL11), accounts for approximately 5% of DBA. DBA7 is usually characterized by early-onset bone marrow failure often accompanied by congenital malformations, especially thumb defects. Here, we present the case of a 2-year-old boy with chronic mild normocytic anemia, short stature, bilateral underdevelopment of the thumbs, atrial septal defect, and hypospadias. Hematological testing revealed slightly decreased hematocrit and hemoglobin, normal HbF, and elevated eADA. Family history included maternal relatives with thumb defects, but the mother's thumbs were normal. Clinical exome sequencing detected a maternally-inherited RPL11 variant, c.396+3A>G, that is predicted to affect splicing. A family correlation study of the identified variant demonstrates segregation with thumb anomalies in the mother's family. RNA studies suggest that the variant produces an alternative transcript that is likely susceptible to nonsense-mediated decay. This report summarizes the prevalence of non-anemia findings in DBA7 and describes a non-classical familial presentation of DBA7 more associated with thumb anomalies than with anemia.


Asunto(s)
Anemia de Diamond-Blackfan/genética , Mutación , Empalme del ARN , Proteínas Ribosómicas/genética , Adulto , Preescolar , Femenino , Humanos , Masculino , Linaje , Penetrancia , Fenotipo
15.
Hum Mutat ; 38(5): 517-523, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28229513

RESUMEN

The clinical interpretation of genetic variants has come to rely heavily on reference population databases such as the Exome Aggregation Consortium (ExAC) database. Pathogenic variants in genes associated with severe, pediatric-onset, highly penetrant, autosomal dominant conditions are assumed to be absent or rare in these databases. Exome sequencing of a 6-year-old female patient with seizures, developmental delay, dysmorphic features, and failure to thrive identified an ASXL1 variant previously reported as causative of Bohring-Opitz syndrome (BOS). Surprisingly, the variant was observed seven times in the ExAC database, presumably in individuals without BOS. Although the BOS phenotype fit, the presence of the variant in reference population databases introduced ambiguity in result interpretation. Review of the literature revealed that acquired somatic mosaicism of ASXL1 variants (including pathogenic variants) during hematopoietic clonal expansion can occur with aging in healthy individuals. We examined all ASXL1 truncating variants in the ExAC database and determined most are likely somatic. Failure to consider somatic mosaicism may lead to the inaccurate assumption that conditions like BOS have reduced penetrance, or the misclassification of potentially pathogenic variants.


Asunto(s)
Craneosinostosis/diagnóstico , Craneosinostosis/genética , Estudios de Asociación Genética , Mutación de Línea Germinal , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Mutación , Proteínas Represoras/genética , Anciano , Anciano de 80 o más Años , Alelos , Sustitución de Aminoácidos , Preescolar , Bases de Datos Genéticas , Facies , Femenino , Estudios de Asociación Genética/métodos , Humanos , Lactante , Masculino , Persona de Mediana Edad , Fenotipo
16.
Anesthesiology ; 116(3): 586-602, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22354242

RESUMEN

BACKGROUND: Anesthesia given to immature rodents causes cognitive decline, raising the possibility that the same might be true for millions of children undergoing surgical procedures under general anesthesia each year. We tested the hypothesis that anesthesia-induced cognitive decline in rats is treatable. We also tested if anesthesia-induced cognitive decline is aggravated by tissue injury. METHODS: Seven-day old rats underwent sevoflurane anesthesia (1 minimum alveolar concentration, 4 h) with or without tail clamping. At 4 weeks, rats were randomized to environmental enrichment or normal housing. At 8 weeks rats underwent neurocognitive testing, which consisted of fear conditioning, spatial reference memory, and water maze-based memory consolidation tests, and interrogated working memory, short-term memory, and early long-term memory. RESULTS: Sevoflurane-treated rats had a greater escape latency when the delay between memory acquisition and memory retrieval was increased from 1 min to 1 h, indicating that short-term memory was impaired. Delayed environmental enrichment reversed the effects of sevoflurane on short-term memory and generally improved many tested aspects of cognitive function, both in sevoflurane-treated and control animals. The performance of tail-clamped rats did not differ from those rats receiving anesthesia alone. CONCLUSION: Sevoflurane-induced cognitive decline in rats is treatable. Delayed environmental enrichment rescued the sevoflurane-induced impairment in short-term memory. Tissue injury did not worsen the anesthesia-induced memory impairment. These findings may have relevance to neonatal and pediatric anesthesia.


Asunto(s)
Vivienda para Animales , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/terapia , Éteres Metílicos/toxicidad , Factores de Edad , Animales , Animales Recién Nacidos , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Aprendizaje por Laberinto/fisiología , Trastornos de la Memoria/fisiopatología , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Sevoflurano , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA