Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cochrane Database Syst Rev ; 4: CD013856, 2024 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-38588457

RESUMEN

BACKGROUND: Physical exercise is effective in managing Parkinson's disease (PD), but the relative benefit of different exercise types remains unclear. OBJECTIVES: To compare the effects of different types of physical exercise in adults with PD on the severity of motor signs, quality of life (QoL), and the occurrence of adverse events, and to generate a clinically meaningful treatment ranking using network meta-analyses (NMAs). SEARCH METHODS: An experienced information specialist performed a systematic search for relevant articles in CENTRAL, MEDLINE, Embase, and five other databases to 17 May 2021. We also searched trial registries, conference proceedings, and reference lists of identified studies up to this date. SELECTION CRITERIA: We included randomized controlled trials (RCTs) comparing one type of physical exercise for adults with PD to another type of exercise, a control group, or both. DATA COLLECTION AND ANALYSIS: Two review authors independently extracted data. A third author was involved in case of disagreements. We categorized the interventions and analyzed their effects on the severity of motor signs, QoL, freezing of gait, and functional mobility and balance up to six weeks after the intervention using NMAs. Two review authors independently assessed the risk of bias using the risk of bias 2 (RoB 2) tool and rated the confidence in the evidence using the CINeMA approach for results on the severity of motor signs and QoL. We consulted a third review author to resolve any disagreements. Due to heterogeneous reporting of adverse events, we summarized safety data narratively and rated our confidence in the evidence using the GRADE approach. MAIN RESULTS: We included 154 RCTs with a total of 7837 participants with mostly mild to moderate disease and no major cognitive impairment. The number of participants per study was small (mean 51, range from 10 to 474). The NMAs on the severity of motor signs and QoL included data from 60 (2721 participants), and 48 (3029 participants) trials, respectively. Eighty-five studies (5192 participants) provided safety data. Here, we present the main results. We observed evidence of beneficial effects for most types of physical exercise included in our review compared to a passive control group. The effects on the severity of motor signs and QoL are expressed as scores on the motor scale of the Unified Parkinson's Disease Rating Scale (UPDRS-M) and the Parkinson's Disease Questionnaire 39 (PDQ-39), respectively. For both scales, higher scores denote higher symptom burden. Therefore, negative estimates reflect improvement (minimum clinically important difference: -2.5 for UPDRS-M and -4.72 for PDQ-39). Severity of motor signs The evidence from the NMA (60 studies; 2721 participants) suggests that dance and gait/balance/functional training probably have a moderate beneficial effect on the severity of motor signs (dance: mean difference (MD) -10.18, 95% confidence interval (CI) -14.87 to -5.36; gait/balance/functional training: MD -7.50, 95% CI -11.39 to -3.48; moderate confidence), and multi-domain training probably has a small beneficial effect on the severity of motor signs (MD -5.90, 95% CI -9.11 to -2.68; moderate confidence). The evidence also suggests that endurance, aqua-based, strength/resistance, and mind-body training might have a small beneficial effect on the severity of motor signs (endurance training: MD -5.76, 95% CI -9.78 to -1.74; aqua-based training: MD -5.09, 95% CI -10.45 to 0.40; strength/resistance training: MD -4.96, 95% CI -9.51 to -0.40; mind-body training: MD -3.62, 95% CI -7.24 to 0.00; low confidence). The evidence is very uncertain about the effects of "Lee Silverman Voice training BIG" (LSVT BIG) and flexibility training on the severity of motor signs (LSVT BIG: MD -6.70, 95% CI -16.48 to 3.08; flexibility training: MD 4.20, 95% CI -1.61 to 9.92; very low confidence). Quality of life The evidence from the NMA (48 studies; 3029 participants) suggests that aqua-based training probably has a large beneficial effect on QoL (MD -15.15, 95% CI -23.43 to -6.87; moderate confidence). The evidence also suggests that mind-body, gait/balance/functional, and multi-domain training and dance might have a small beneficial effect on QoL (mind-body training: MD -7.22, 95% CI -13.57 to -0.70; gait/balance/functional training: MD -6.17, 95% CI -10.75 to -1.59; multi-domain training: MD -5.29, 95% CI -9.51 to -1.06; dance: MD -3.88, 95% CI -10.92 to 3.00; low confidence). The evidence is very uncertain about the effects of gaming, strength/resistance, endurance, and flexibility training on QoL (gaming: MD -8.99, 95% CI -23.43 to 5.46; strength/resistance training: MD -6.70, 95% CI -12.86 to -0.35; endurance training: MD -6.52, 95% CI -13.74 to 0.88; flexibility training: MD 1.94, 95% CI -10.40 to 14.27; very low confidence). Adverse events Only 85 studies (5192 participants) provided some kind of safety data, mostly only for the intervention groups. No adverse events (AEs) occurred in 40 studies and no serious AEs occurred in four studies. AEs occurred in 28 studies. The most frequently reported events were falls (18 studies) and pain (10 studies). The evidence is very uncertain about the effect of physical exercise on the risk of adverse events (very low confidence). Across outcomes, we observed little evidence of differences between exercise types. AUTHORS' CONCLUSIONS: We found evidence of beneficial effects on the severity of motor signs and QoL for most types of physical exercise for people with PD included in this review, but little evidence of differences between these interventions. Thus, our review highlights the importance of physical exercise regarding our primary outcomes severity of motor signs and QoL, while the exact exercise type might be secondary. Notably, this conclusion is consistent with the possibility that specific motor symptoms may be treated most effectively by PD-specific programs. Although the evidence is very uncertain about the effect of exercise on the risk of adverse events, the interventions included in our review were described as relatively safe. Larger, well-conducted studies are needed to increase confidence in the evidence. Additional studies recruiting people with advanced disease severity and cognitive impairment might help extend the generalizability of our findings to a broader range of people with PD.


Asunto(s)
Enfermedad de Parkinson , Adulto , Humanos , Metaanálisis en Red , Enfermedad de Parkinson/terapia , Ejercicio Físico , Terapia por Ejercicio , Marcha , Calidad de Vida
2.
Cochrane Database Syst Rev ; 1: CD013856, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36602886

RESUMEN

BACKGROUND: Physical exercise is effective in managing Parkinson's disease (PD), but the relative benefit of different exercise types remains unclear. OBJECTIVES: To compare the effects of different types of physical exercise in adults with PD on the severity of motor signs, quality of life (QoL), and the occurrence of adverse events, and to generate a clinically meaningful treatment ranking using network meta-analyses (NMAs). SEARCH METHODS: An experienced information specialist performed a systematic search for relevant articles in CENTRAL, MEDLINE, Embase, and five other databases to 17 May 2021. We also searched trial registries, conference proceedings, and reference lists of identified studies up to this date. SELECTION CRITERIA: We included randomized controlled trials (RCTs) comparing one type of physical exercise for adults with PD to another type of exercise, a control group, or both. DATA COLLECTION AND ANALYSIS: Two review authors independently extracted data. A third author was involved in case of disagreements.  We categorized the interventions and analyzed their effects on the severity of motor signs, QoL, freezing of gait, and functional mobility and balance up to six weeks after the intervention using NMAs. Two review authors independently assessed the risk of bias using the risk of bias 2 (RoB 2) tool and rated the confidence in the evidence using the CINeMA approach for results on the severity of motor signs and QoL. We consulted a third review author to resolve any disagreements. Due to heterogeneous reporting of adverse events, we summarized safety data narratively and rated our confidence in the evidence using the GRADE approach. MAIN RESULTS: We included 156 RCTs with a total of 7939 participants with mostly mild to moderate disease and no major cognitive impairment. The number of participants per study was small (mean 51, range from 10 to 474). The NMAs on the severity of motor signs and QoL included data from 71 (3196 participants), and 55 (3283 participants) trials, respectively. Eighty-five studies (5192 participants) provided safety data. Here, we present the main results. We observed evidence of beneficial effects for most types of physical exercise included in our review compared to a passive control group. The effects on the severity of motor signs and QoL are expressed as scores on the motor scale of the Unified Parkinson Disease Rating Scale (UPDRS-M) and the Parkinson's Disease Questionnaire 39 (PDQ-39), respectively. For both scales, higher scores denote higher symptom burden. Therefore, negative estimates reflect improvement (minimum clinically important difference: -2.5 for UPDRS-M and -4.72 for PDQ-39). Severity of motor signs The evidence from the NMA (71 studies; 3196 participants) suggests that dance has a moderate beneficial effect on the severity of motor signs (mean difference (MD) -10.32, 95% confidence interval (CI) -15.54 to -4.96; high confidence), and aqua-based, gait/balance/functional, and multi-domain training might have a moderate beneficial effect on the severity of motor signs (aqua-based: MD -7.77, 95% CI -13.27 to -2.28; gait/balance/functional: MD -7.37, 95% CI -11.39 to -3.35; multi-domain: MD -6.97, 95% CI -10.32 to -3.62; low confidence). The evidence also suggests that mind-body training and endurance training might have a small beneficial effect on the severity of motor signs (mind-body: MD -6.57, 95% CI -10.18 to -2.81; endurance: MD -6.43, 95% CI -10.72 to -2.28; low confidence). Flexibility training might have a trivial or no effect on the severity of motor signs (MD 2.01, 95% CI -4.82 to 8.98; low confidence). The evidence is very uncertain about the effects of strength/resistance training and "Lee Silverman Voice training BIG" (LSVT BIG) on the severity of motor signs (strength/resistance: MD -6.97, 95% CI -11.93 to -2.01; LSVT BIG: MD -5.49, 95% CI -14.74 to 3.62; very low confidence). Quality of life The evidence from the NMA (55 studies; 3283 participants) suggests that aqua-based training probably has a large beneficial effect on QoL (MD -14.98, 95% CI -23.26 to -6.52; moderate confidence). The evidence also suggests that endurance training might have a moderate beneficial effect, and that gait/balance/functional and multi-domain training might have a small beneficial effect on QoL (endurance: MD -9.16, 95% CI -15.68 to -2.82; gait/balance/functional: MD -5.64, 95% CI -10.04 to -1.23; multi-domain: MD -5.29, 95% CI -9.34 to -1.06; low confidence). The evidence is very uncertain about the effects of mind-body training, gaming, strength/resistance training, dance, LSVT BIG, and flexibility training on QoL (mind-body: MD -8.81, 95% CI -14.62 to -3.00; gaming: MD -7.05, 95% CI -18.50 to 4.41; strength/resistance: MD -6.34, 95% CI -12.33 to -0.35; dance: MD -4.05, 95% CI -11.28 to 3.00; LSVT BIG: MD 2.29, 95% CI -16.03 to 20.44; flexibility: MD 1.23, 95% CI -11.45 to 13.92; very low confidence). Adverse events Only 85 studies (5192 participants) provided some kind of safety data, mostly only for the intervention groups. No adverse events (AEs) occurred in 40 studies and no serious AEs occurred in four studies. AEs occurred in 28 studies. The most frequently reported events were falls (18 studies) and pain (10 studies). The evidence is very uncertain about the effect of physical exercise on the risk of adverse events (very low confidence). Across outcomes, we observed little evidence of differences between exercise types. AUTHORS' CONCLUSIONS: We found evidence of beneficial effects on the severity of motor signs and QoL for most types of physical exercise for people with PD included in this review, but little evidence of differences between these interventions. Thus, our review highlights the importance of physical exercise regarding our primary outcomes severity of motor signs and QoL, while the exact exercise type might be secondary. Notably, this conclusion is consistent with the possibility that specific motor symptoms may be treated most effectively by PD-specific programs. Although the evidence is very uncertain about the effect of exercise on the risk of adverse events, the interventions included in our review were described as relatively safe. Larger, well-conducted studies are needed to increase confidence in the evidence. Additional studies recruiting people with advanced disease severity and cognitive impairment might help extend the generalizability of our findings to a broader range of people with PD.


Asunto(s)
Enfermedad de Parkinson , Entrenamiento de Fuerza , Adulto , Humanos , Enfermedad de Parkinson/terapia , Metaanálisis en Red , Ejercicio Físico , Marcha , Calidad de Vida
3.
J Parkinsons Dis ; 12(6): 1783-1806, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35754291

RESUMEN

BACKGROUND: Previous reviews indicated positive effects of resistance training (RT) on motor outcomes in Parkinson's disease (PD). However, inconsistencies between the included studies exist, and non-motor outcomes have only scarcely been considered in a review on RT in PD. OBJECTIVE: To analyze the RT effects on motor- and non-motor outcomes in PD patients compared to passive and physically active control groups (i.e., other structured physical interventions). METHODS: We searched CENTRAL, MEDLINE, EMBASE, and CINAHL for randomized controlled trials of RT in PD. After identifying 18 studies, a meta-analysis was conducted for the outcomes muscle strength, motor impairment, freezing of gait (FoG), mobility and balance, quality of life (QoL), depression, cognition, and adverse events. Meta-analyses with random models were calculated using mean differences (MD) or standardized mean differences (SMD) with 95% confidence intervals (CI). RESULTS: When comparing RT with passive control groups, the meta-analyses showed significant large effects on muscle strength (SMD = -0.84, 95% CI -1.29--0.39, p = 0.0003), motor impairment (SMD = -0.81, 95% CI -1.34--0.27, p = 0.003), mobility and balance (MD = -1.81, 95% CI -3.13--0.49, p = 0.007), and small significant effects on QoL (SMD = -0.48, 95% CI -0.86--0.10, p = 0.01). RT compared with physically active control groups reached no significant results for any outcome. CONCLUSIONS: RT improves muscle strength, motor impairment, mobility and balance, QoL, and depression in PD patients. However, it is not superior to other physically active interventions. Therefore, exercise is important for PD patients but according to this analysis, its type is of secondary interest.


Asunto(s)
Trastornos Neurológicos de la Marcha , Enfermedad de Parkinson , Entrenamiento de Fuerza , Trastornos Neurológicos de la Marcha/etiología , Humanos , Fuerza Muscular/fisiología , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/terapia , Calidad de Vida , Entrenamiento de Fuerza/métodos
4.
Cochrane Database Syst Rev ; 9: CD013365, 2021 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-34515338

RESUMEN

BACKGROUND: Diffuse large B-cell lymphoma (DLBCL) is an aggressive cancer of the lymphatic system. About 30% to 40% of people with DLBCL experience relapse and 10% are refractory to first-line treatment usually consisting of R-CHOP chemotherapy. Of those eligible for second-line treatment, commonly consisting of salvage chemotherapy followed by autologous stem-cell transplantation (ASCT), around 50% experience relapse. With a median overall survival of less than six to 12 months, the prognosis of individuals who relapse or are refractory (r/r) to advanced lines of treatment or of those who are ineligible for ASCT, is very poor. With the introduction of chimeric antigen receptor (CAR) T-cell therapy, a novel treatment option for these people is available. OBJECTIVES: To assess the benefits and harms of chimeric antigen receptor (CAR) T-cell therapy for people with relapsed or refractory (r/r) DLBCL. SEARCH METHODS: An experienced information specialist performed a systematic database search for relevant articles on CENTRAL, MEDLINE and Embase until September 11th, 2020. We also searched trial registries and reference lists of identified studies up to this date. All search results were screened by two authors independently and a third author was involved in case of discrepancies. SELECTION CRITERIA: We included prospectively planned trials evaluating CAR T-cell therapy for people with r/r DLBCL. We had planned to include randomised controlled trials (RCTs) and we flexibly adapted eligibility criteria to the most reliable study designs available. We excluded studies involving fewer than 10 participants with r/r DLBCL and studies with a proportion of participants with r/r DLBCL below 70%, unless data were reported separately for this subgroup. DATA COLLECTION AND ANALYSIS: Two review authors extracted data and performed risk of bias ratings independently. A third author was involved in case of disagreements. As our search did not yield any completed RCTs, prospective controlled non-randomised studies of interventions (NRSIs) or prospective observational studies with a control group, we did not meta-analyse data and reported all results narratively. We adopted the GRADE approach to assess the certainty of the evidence for prioritised outcomes. MAIN RESULTS: We identified 13 eligible uncontrolled studies evaluating a single or multiple arms of CAR T-cell therapies. We also identified 38 ongoing studies, including three RCTs. Ten studies are awaiting classification due to completion with no retrievable results data or insufficient data to justify inclusion. The mean number of participants enrolled, treated with CAR T-cell therapy and evaluated in the included studies were 79 (range 12 to 344; data unavailable for two studies), 61 (range 12 to 294; data unavailable for one study) and 52 (range 11 to 256), respectively. Most studies included people with r/r DLBCL among people with other haematological B-cell malignancies. Participants had received at least a median of three prior treatment lines (data unavailable for four studies), 5% to 50% had undergone ASCT (data unavailable for five studies) and, except for two studies, 3% to 18% had undergone allogenic stem-cell transplantation (data unavailable for eight studies). The overall risk of bias was high for all studies, in particular, due to incomplete follow-up and the absence of blinding. None of the included studies had a control group so that no adequate comparative effect measures could be calculated. The duration of follow-up varied substantially between studies, in particular, for harms. Our certainty in the evidence is very low for all outcomes. Overall survival was reported by eight studies (567 participants). Four studies reported survival rates at 12 months which ranged between 48% and 59%, and one study reported an overall survival rate of 50.5% at 24 months. The evidence is very uncertain about the effect of CAR T-cell therapy on overall survival. Two studies including 294 participants at baseline and 59 participants at the longest follow-up (12 months or 18 months) described improvements of quality of life measured with the EuroQol 5-Dimension 5-Level visual analogue scale (EQ-5D-5L VAS) or Function Assessment of Cancer Therapy-Lymphoma (FACT-Lym). The evidence is very uncertain about the effect of CAR T-cell therapy on quality of life. None of the studies reported treatment-related mortality. Five studies (550 participants) reported the occurrence of adverse events among participants, ranging between 99% and 100% for any grade adverse events and 68% to 98% for adverse events grade ≥ 3. In three studies (253 participants), 56% to 68% of participants experienced serious adverse events, while in one study (28 participants), no serious adverse events occurred. CAR T-cell therapy may increase the risk of adverse events and serious adverse events but the evidence is very uncertain about the exact risk. The occurrence of cytokine release syndrome (CRS) was reported in 11 studies (675 participants) under use of various grading criteria. Five studies reported between 42% and 100% of participants experiencing CRS according to criteria described in Lee 2014. CAR T-cell therapy may increase the risk of CRS but the evidence is very uncertain about the exact risk. Nine studies (575 participants) reported results on progression-free survival, disease-free survival or relapse-free survival. Twelve-month progression-free survival rates were reported by four studies and ranged between 44% and 75%. In one study, relapse-free survival remained at a rate of 64% at both 12 and 18 months. The evidence is very uncertain about the effect of CAR T-cell therapy on progression-free survival. Thirteen studies (620 participants) provided data on complete response rates. At six months, three studies reported complete response rates between 40% and 45%. The evidence is very uncertain about the effect of CAR T-cell therapy on complete response rates. AUTHORS' CONCLUSIONS: The available evidence on the benefits and harms of CAR T-cell therapy for people with r/r DLBCL is limited, mainly because of the absence of comparative clinical trials. The results we present should be regarded in light of this limitation and conclusions should be drawn very carefully. Due to the uncertainty in the current evidence, a large number of ongoing investigations and a risk of substantial and potentially life-threatening complications requiring supplementary treatment, it is critical to continue evaluating the evidence on this new therapy.


Asunto(s)
Linfoma de Células B Grandes Difuso , Receptores Quiméricos de Antígenos , Tratamiento Basado en Trasplante de Células y Tejidos , Humanos , Inmunoterapia Adoptiva , Linfoma de Células B Grandes Difuso/terapia , Recurrencia Local de Neoplasia , Estudios Observacionales como Asunto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA