RESUMEN
PURPOSE: Less than half of the patients with newly diagnosed metastatic non-small cell lung cancer (NSCLC) undergo comprehensive molecular testing. We designed an electronic medical record (EMR)-based "nudge intervention" to prompt plasma-based molecular testing at the time of initial medical oncology consultation. METHODS: A nonrandomized prospective trial was conducted at the University of Pennsylvania's academic practice and two affiliated community practices. Molecular genotyping was performed by tissue- and/or plasma-based next generation sequencing methods. Comprehensive testing was defined as testing for EGFR, ALK, BRAF, ROS1, MET, RET, KRAS, and NTRK. Guideline-concordant treatment was defined as the use of the appropriate first-line (1L) therapy as per the National Comprehensive Cancer Network (NCCN) guidelines. Proportion of patients with comprehensive molecular genotyping results available at any time, molecular results available before 1L therapy, and guideline-concordant 1L treatment were compared between the preintervention and postintervention cohorts using Fisher's exact test or Pearson's chi-squared test. RESULTS: Five hundred and thirty-three patients were included, 376 in the preintervention cohort and 157 in the postintervention cohort. After implementation of the EMR-based nudge, a higher proportion of patients underwent comprehensive molecular testing in the postintervention versus the preintervention cohort (100% v 88%, P = <.001), had results of comprehensive molecular testing available before initiating 1L treatment (97.3% v 91.6%, P = .026), and received NCCN guideline-concordant care (89.8% v 78.2%, P = .035). CONCLUSION: Across three practice sites in a large health system, implementation of a provider team-focused EMR-based nudge intervention was feasible, and led to a higher number of patients with NSCLC undergoing comprehensive molecular genotyping. These findings demonstrate that behavioral nudges can promote molecular testing and should be studied further as a tool to improve guideline-concordant care in both community and academic sites.
RESUMEN
While high circulating tumor DNA (ctDNA) levels are associated with poor survival for multiple cancers, variant-specific differences in the association of ctDNA levels and survival have not been examined. Here we investigate KRAS ctDNA (ctKRAS) variant-specific associations with overall and progression-free survival (OS/PFS) in first-line metastatic pancreatic ductal adenocarcinoma (mPDAC) for patients receiving chemoimmunotherapy ("PRINCE", NCT03214250), and an independent cohort receiving standard of care (SOC) chemotherapy. For PRINCE, higher baseline plasma levels are associated with worse OS for ctKRAS G12D (log-rank p = 0.0010) but not G12V (p = 0.7101), even with adjustment for clinical covariates. Early, on-therapy clearance of G12D (p = 0.0002), but not G12V (p = 0.4058), strongly associates with OS for PRINCE. Similar results are obtained for the SOC cohort, and for PFS in both cohorts. These results suggest ctKRAS G12D but not G12V as a promising prognostic biomarker for mPDAC and that G12D clearance could also serve as an early biomarker of response.
Asunto(s)
Biomarcadores de Tumor , Carcinoma Ductal Pancreático , ADN Tumoral Circulante , Neoplasias Pancreáticas , Proteínas Proto-Oncogénicas p21(ras) , Humanos , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/mortalidad , Carcinoma Ductal Pancreático/sangre , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/tratamiento farmacológico , Proteínas Proto-Oncogénicas p21(ras)/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/sangre , Neoplasias Pancreáticas/mortalidad , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/tratamiento farmacológico , Femenino , Masculino , ADN Tumoral Circulante/sangre , ADN Tumoral Circulante/genética , Persona de Mediana Edad , Anciano , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/genética , Pronóstico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Mutación , Supervivencia sin Progresión , Metástasis de la NeoplasiaRESUMEN
Persistent inflammation driven by cytokines such as type-one interferon (IFN-I) can cause immunosuppression. We show that administration of the Janus kinase 1 (JAK1) inhibitor itacitinib after anti-PD-1 (programmed cell death protein 1) immunotherapy improves immune function and antitumor responses in mice and results in high response rates (67%) in a phase 2 clinical trial for metastatic non-small cell lung cancer. Patients who failed to respond to initial anti-PD-1 immunotherapy but responded after addition of itacitinib had multiple features of poor immune function to anti-PD-1 alone that improved after JAK inhibition. Itacitinib promoted CD8 T cell plasticity and therapeutic responses of exhausted and effector memory-like T cell clonotypes. Patients with persistent inflammation refractory to itacitinib showed progressive CD8 T cell terminal differentiation and progressive disease. Thus, JAK inhibition may improve the efficacy of anti-PD-1 immunotherapy by pivoting T cell differentiation dynamics.
Asunto(s)
Linfocitos T CD8-positivos , Carcinoma de Pulmón de Células no Pequeñas , Inhibidores de Puntos de Control Inmunológico , Janus Quinasa 1 , Inhibidores de las Cinasas Janus , Neoplasias Pulmonares , Receptor de Muerte Celular Programada 1 , Animales , Femenino , Humanos , Ratones , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Carcinoma de Pulmón de Células no Pequeñas/terapia , Linfocitos T CD8-positivos/inmunología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inmunoterapia/métodos , Janus Quinasa 1/antagonistas & inhibidores , Inhibidores de las Cinasas Janus/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/terapia , Receptor de Muerte Celular Programada 1/antagonistas & inhibidoresRESUMEN
BACKGROUNDThe molecular signature of pediatric acute respiratory distress syndrome (ARDS) is poorly described, and the degree to which hyperinflammation or specific tissue injury contributes to outcomes is unknown. Therefore, we profiled inflammation and tissue injury dynamics over the first 7 days of ARDS, and associated specific biomarkers with mortality, persistent ARDS, and persistent multiple organ dysfunction syndrome (MODS).METHODSIn a single-center prospective cohort of intubated pediatric patients with ARDS, we collected plasma on days 0, 3, and 7. Nineteen biomarkers reflecting inflammation, tissue injury, and damage-associated molecular patterns (DAMPs) were measured. We assessed the relationship between biomarkers and trajectories with mortality, persistent ARDS, or persistent MODS using multivariable mixed effect models.RESULTSIn 279 patients (64 [23%] nonsurvivors), hyperinflammatory cytokines, tissue injury markers, and DAMPs were higher in nonsurvivors. Survivors and nonsurvivors showed different biomarker trajectories. IL-1α, soluble tumor necrosis factor receptor 1, angiopoietin 2 (ANG2), and surfactant protein D increased in nonsurvivors, while DAMPs remained persistently elevated. ANG2 and procollagen type III N-terminal peptide were associated with persistent ARDS, whereas multiple cytokines, tissue injury markers, and DAMPs were associated with persistent MODS. Corticosteroid use did not impact the association of biomarker levels or trajectory with mortality.CONCLUSIONSPediatric ARDS survivors and nonsurvivors had distinct biomarker trajectories, with cytokines, endothelial and alveolar epithelial injury, and DAMPs elevated in nonsurvivors. Mortality markers overlapped with markers associated with persistent MODS, rather than persistent ARDS.FUNDINGNIH (K23HL-136688, R01-HL148054).
Asunto(s)
Biomarcadores , Inflamación , Síndrome de Dificultad Respiratoria , Humanos , Biomarcadores/sangre , Biomarcadores/metabolismo , Masculino , Femenino , Niño , Preescolar , Síndrome de Dificultad Respiratoria/sangre , Síndrome de Dificultad Respiratoria/mortalidad , Lactante , Inflamación/sangre , Estudios Prospectivos , Adolescente , Insuficiencia Multiorgánica/sangre , Insuficiencia Multiorgánica/mortalidad , Citocinas/sangreAsunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Masculino , Femenino , Persona de Mediana Edad , Anciano , Genotipo , Mutación/genética , Reflejo/fisiologíaRESUMEN
OBJECTIVE: Pancreatic ductal adenocarcinoma (PDAC) is commonly diagnosed at an advanced stage. Liquid biopsy approaches may facilitate detection of early stage PDAC when curative treatments can be employed. DESIGN: To assess circulating marker discrimination in training, testing and validation patient cohorts (total n=426 patients), plasma markers were measured among PDAC cases and patients with chronic pancreatitis, colorectal cancer (CRC), and healthy controls. Using CA19-9 as an anchor marker, measurements were made of two protein markers (TIMP1, LRG1) and cell-free DNA (cfDNA) pancreas-specific methylation at 9 loci encompassing 61 CpG sites. RESULTS: Comparative methylome analysis identified nine loci that were differentially methylated in exocrine pancreas DNA. In the training set (n=124 patients), cfDNA methylation markers distinguished PDAC from healthy and CRC controls. In the testing set of 86 early stage PDAC and 86 matched healthy controls, CA19-9 had an area under the receiver operating characteristic curve (AUC) of 0.88 (95% CI 0.83 to 0.94), which was increased by adding TIMP1 (AUC 0.92; 95% CI 0.88 to 0.96; p=0.06), LRG1 (AUC 0.92; 95% CI 0.88 to 0.96; p=0.02) or exocrine pancreas-specific cfDNA methylation markers at nine loci (AUC 0.92; 95% CI 0.88 to 0.96; p=0.02). In the validation set of 40 early stage PDAC and 40 matched healthy controls, a combined panel including CA19-9, TIMP1 and a 9-loci cfDNA methylation panel had greater discrimination (AUC 0.86, 95% CI 0.77 to 0.95) than CA19-9 alone (AUC 0.82; 95% CI 0.72 to 0.92). CONCLUSION: A combined panel of circulating markers including proteins and methylated cfDNA increased discrimination compared with CA19-9 alone for early stage PDAC.
Asunto(s)
Adenocarcinoma , Carcinoma Ductal Pancreático , Ácidos Nucleicos Libres de Células , Neoplasias Pancreáticas , Humanos , Antígeno CA-19-9 , Biomarcadores de Tumor , Ácidos Nucleicos Libres de Células/metabolismo , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Páncreas/patología , Adenocarcinoma/diagnóstico , Adenocarcinoma/genética , Adenocarcinoma/patología , Metilación de ADNRESUMEN
The therapeutic landscape for patients with advanced malignancies has changed dramatically over the last twenty years. The growing number of targeted therapies and immunotherapeutic options available have improved response rates and survival for a subset of patients, however determining which patients will experience clinical benefit from these therapies in order to avoid potential toxicities and reduce healthcare costs remains a clinical challenge. Cell-free circulating tumor DNA (ctDNA) is shed by tumor cells into systemic circulation and is already an integral part of routine clinical practice for the non-invasive tumor genotyping in advanced non-small cell lung cancer as well as other malignancies. The short half-life of ctDNA offers a unique opportunity to utilize early on-treatment changes in ctDNA for real-time assessment of therapeutic response and outcome, termed molecular response. Here, we provide a summary and review of the use of molecular response for the prediction of outcomes in patients with advanced cancer, including the current state of science, its application in clinic, and next steps for the development of this predictive tool.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , ADN Tumoral Circulante , Neoplasias Pulmonares , Humanos , ADN Tumoral Circulante/genética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/tratamiento farmacológico , Biomarcadores de Tumor/genética , MutaciónRESUMEN
The isolation of specific subpopulations of extracellular vesicles (EVs) based on their expression of surface markers poses a significant challenge due to their nanoscale size (< 800 nm), their heterogeneous surface marker expression, and the vast number of background EVs present in clinical specimens (1010-1012 EVs/mL in blood). Highly parallelized nanomagnetic sorting using track etched magnetic nanopore (TENPO) chips has achieved precise immunospecific sorting with high throughput and resilience to clogging. However, there has not yet been a systematic study of the design parameters that control the trade-offs in throughput, target EV recovery, and ability to discard background EVs in this approach. We combine finite-element simulation and experimental characterization of TENPO chips to elucidate design rules to isolate EV subpopulations from blood. We demonstrate the utility of this approach by reducing device background > 10× relative to prior published designs without sacrificing recovery of the target EVs by selecting pore diameter, number of membranes placed in series, and flow rate. We compare TENPO-isolated EVs to those of gold-standard methods of EV isolation and demonstrate its utility for wide application and modularity by targeting subpopulations of EVs from multiple models of disease including lung cancer, pancreatic cancer, and liver cancer.
Asunto(s)
Vesículas Extracelulares , Neoplasias Hepáticas , Nanoporos , Humanos , Movimiento Celular , Simulación por ComputadorRESUMEN
PURPOSE: Current guidelines recommend molecular genotyping for patients newly diagnosed with metastatic nonsquamous (mNSq) non-small-cell lung cancer (NSCLC). The association between availability of molecular genotyping before first line (1L) therapy and overall survival (OS) is not known. METHODS: We conducted a real-world cohort study using electronic health records in patients newly diagnosed with mNSq NSCLC. Cox proportional-hazards multivariable regression models were constructed to examine the association between OS and test result availability before 1L therapy, adjusting for covariates. Additional analyses were conducted to assess the consistency and strength of the relationship. Multivariable logistic regression models were used to examine the association between concurrent tissue and plasma testing (v tissue alone) and result availability. RESULTS: Three hundred twenty-six patients were included, 80% (261/326) with results available before 1L (available testing group), and 20% (65/326) without results available (unavailable testing group). With 14.2-month median follow-up, patients in the available testing group had significantly longer OS relative to the unavailable testing group (adjusted hazard ratio, 0.43; 95% CI, 0.30 to 0.62; P < .0001). The adjusted odds of availability of results before 1L therapy was higher with concurrent tissue and plasma testing (v tissue testing alone; adjusted odds ratio, 2.06; 95% CI, 1.09 to 3.90; P = .026). CONCLUSION: Among patients with mNSq NSCLC in a real-world cohort, availability of molecular genotyping results before 1L therapy was associated with significantly better OS. Concurrent tissue and plasma testing was associated with a higher odds of availability of results before 1L therapy. These findings warrant renewed attention to the completion of molecular genotyping before 1L therapy.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/patología , Estudios de Cohortes , Genotipo , Modelos de Riesgos ProporcionalesRESUMEN
PURPOSE: PARP inhibitors (PARPi) provide an effective maintenance option for patients with BRCA- or PALB2-mutated pancreatic cancer. However, mechanisms of PARPi resistance and optimal post-PARPi therapeutic strategies are poorly characterized. EXPERIMENTAL DESIGN: We collected paired cell-free DNA samples and post-PARPi clinical data on 42 patients with advanced, platinum-sensitive pancreatic cancer who were treated with maintenance rucaparib on NCT03140670, of whom 32 developed progressive disease. RESULTS: Peripherally detected, acquired BRCA or PALB2 reversion variants were uncommon (5/30; 16.6%) in patients who progressed on rucaparib. Reversions were significantly associated with rapid resistance to PARPi treatment (median PFS, 3.7 vs. 12.5 months; P = 0.001) and poor overall survival (median OS, 6.2 vs. 23.0 months; P < 0.0001). All patients with reversions received rechallenge with platinum-based chemotherapy following PARPi progression and experienced faster progression on this therapy than those without reversion variants (real-world time-to-treatment discontinuation, 2.4 vs. 5.8 months; P = 0.004). Of the patients who progressed on PARPi and received further chemotherapy, the OS from initiation of second-line therapy was significantly lower in those with reversion variants than in those without (5.5 vs. 12.0 months, P = 0.002). Finally, high levels of tumor shedding were independently associated with poor outcomes in patients who received rucaparib. CONCLUSIONS: Acquired reversion variants were uncommon but detrimental in a population of patients with advanced BRCA- or PALB2-related pancreatic ductal adenocarcinoma who received maintenance rucaparib. Reversion variants led to rapid progression on PARPi, rapid failure of subsequent platinum-based treatment, and poor OS of patients. The identification of such variants in the blood may have both predictive and prognostic value. See related commentary by Tsang and Gallinger, p. 5005.
Asunto(s)
Neoplasias Ováricas , Neoplasias Pancreáticas , Femenino , Humanos , Neoplasias Ováricas/patología , Proteína BRCA2/genética , Pronóstico , Indoles , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Platino (Metal)/uso terapéutico , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Proteína BRCA1/genética , Proteína del Grupo de Complementación N de la Anemia de Fanconi/genéticaRESUMEN
The isolation of specific subpopulations of extracellular vesicles (EVs) based on their expression of surface markers poses a significant challenge due to their nanoscale size (< 800 nm), their heterogeneous surface marker expression, and the vast number of background EVs present in clinical specimens (10 10 -10 12 EVs/mL in blood). Highly parallelized nanomagnetic sorting using track etched magnetic nanopore (TENPO) chips has achieved precise immunospecific sorting with high throughput and resilience to clogging. However, there has not yet been a systematic study of the design parameters that control the trade-offs in throughput, target EV recovery, and specificity in this approach. We combine finite-element simulation and experimental characterization of TENPO chips to elucidate design rules to isolate EV subpopulations from blood. We demonstrate the utility of this approach by increasing specificity > 10x relative to prior published designs without sacrificing recovery of the target EVs by selecting pore diameter, number of membranes placed in series, and flow rate. We compare TENPO-isolated EVs to those of gold-standard methods of EV isolation and demonstrate its utility for wide application and modularity by targeting subpopulations of EVs from multiple models of disease including lung cancer, pancreatic cancer, and liver cancer.
RESUMEN
PURPOSE: Disseminated tumor cells (DTCs) expressing epithelial markers in the bone marrow are associated with recurrence and death, but little is known about risk factors predicting their occurrence. We detected EPCAM+/CD45- cells in bone marrow from early stage breast cancer patients after neoadjuvant chemotherapy (NAC) in the I-SPY 2 Trial and examined clinicopathologic factors and outcomes. METHODS: Patients who signed consent for SURMOUNT, a sub-study of the I-SPY 2 Trial (NCT01042379), had bone marrow collected after NAC at the time of surgery. EPCAM+CD45- cells in 4 mLs of bone marrow aspirate were enumerated using immunomagnetic enrichment/flow cytometry (IE/FC). Patients with > 4.16 EPCAM+CD45- cells per mL of bone marrow were classified as DTC-positive. Tumor response was assessed using the residual cancer burden (RCB), a standardized approach to quantitate the extent of residual invasive cancer present in the breast and the axillary lymph nodes after NAC. Association of DTC-positivity with clinicopathologic variables and survival was examined. RESULTS: A total of 73 patients were enrolled, 51 of whom had successful EPCAM+CD45- cell enumeration. Twenty-four of 51 (47.1%) were DTC-positive. The DTC-positivity rate was similar across receptor subtypes, but DTC-positive patients were significantly younger (p = 0.0239) and had larger pretreatment tumors compared to DTC-negative patients (p = 0.0319). Twenty of 51 (39.2%) achieved a pathologic complete response (pCR). While DTC-positivity was not associated with achieving pCR, it was significantly associated with higher RCB class (RCB-II/III, 62.5% vs. RCB-0/I; 33.3%; Chi-squared p = 0.0373). No significant correlation was observed between DTC-positivity and distant recurrence-free survival (p = 0.38, median follow-up = 3.2 years). CONCLUSION: DTC-positivity at surgery after NAC was higher in younger patients, those with larger tumors, and those with residual disease at surgery.
Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/patología , Médula Ósea/patología , Molécula de Adhesión Celular Epitelial/uso terapéutico , Terapia Neoadyuvante , Citometría de Flujo , PronósticoRESUMEN
Accurate differentiation between tumor progression (TP) and pseudoprogression remains a critical unmet need in neurooncology. 18F-fluciclovine is a widely available synthetic amino acid PET radiotracer. In this study, we aimed to assess the value of 18F-fluciclovine PET for differentiating pseudoprogression from TP in a prospective cohort of patients with suspected radiographic recurrence of glioblastoma. Methods: We enrolled 30 glioblastoma patients with radiographic progression after first-line chemoradiotherapy for whom surgical resection was planned. The patients underwent preoperative 18F-fluciclovine PET and MRI. The relative percentages of viable tumor and therapy-related changes observed in histopathology were quantified and categorized as TP (≥50% viable tumor), mixed TP (<50% and >10% viable tumor), or pseudoprogression (≤10% viable tumor). Results: Eighteen patients had TP, 4 had mixed TP, and 8 had pseudoprogression. Patients with TP/mixed TP had a significantly higher 40- to 50-min SUVmax (6.64 + 1.88 vs. 4.11 ± 1.52, P = 0.009) than patients with pseudoprogression. A 40- to 50-min SUVmax cutoff of 4.66 provided 90% sensitivity and 83% specificity for differentiation of TP/mixed TP from pseudoprogression (area under the curve [AUC], 0.86). A maximum relative cerebral blood volume cutoff of 3.672 provided 90% sensitivity and 71% specificity for differentiation of TP/mixed TP from pseudoprogression (AUC, 0.779). Combining a 40- to 50-min SUVmax cutoff of 4.66 and a maximum relative cerebral blood volume of 3.67 on MRI provided 100% sensitivity and 80% specificity for differentiating TP/mixed TP from pseudoprogression (AUC, 0.95). Conclusion: 18F-fluciclovine PET uptake can accurately differentiate pseudoprogression from TP in glioblastoma, with even greater accuracy when combined with multiparametric MRI. Given the wide availability of 18F-fluciclovine, larger, multicenter studies are warranted to determine whether amino acid PET with 18F-fluciclovine should be used in the routine posttreatment assessment of glioblastoma.
Asunto(s)
Glioblastoma , Humanos , Glioblastoma/diagnóstico por imagen , Glioblastoma/terapia , Glioblastoma/patología , Estudios Prospectivos , Imagen por Resonancia Magnética , Ácidos Carboxílicos , Tomografía de Emisión de Positrones , AminoácidosRESUMEN
Noninvasive molecular profiling of tumors using plasma-based next-generation sequencing (NGS) is increasingly used to aid in diagnosis, treatment selection, and disease monitoring in oncology. In patients with glioma, however, the plasma cell-free DNA (cfDNA) tumor fraction, defined as the fractional proportion of circulating tumor-derived DNA (ctDNA) relative to total cfDNA, is especially low, in large part due to the blood-brain barrier. As a result, commercial plasma-based NGS assays, designed to screen for a small number of actionable genomic alterations, are not sensitive enough to guide the management of patients with glioma. As this has been long recognized in neuro-oncology, significant research efforts have been undertaken to improve the sensitivity of plasma ctDNA detection in patients with glioma and to understand the biology and clinical relevance of non-tumor-derived cfDNA, which makes up most of the total cfDNA pool. Here, we review key recent advances in the field of plasma cfDNA analysis in patients with glioma, including (1) the prognostic impact of pre-treatment and on-treatment total plasma cfDNA concentrations, (2) use of tumor-guided sequencing approaches to improve the sensitivity of ctDNA detection in the plasma, and (3) the emergence of plasma cfDNA methylomics for detection and discrimination of glioma from other primary intracranial tumors.
RESUMEN
PURPOSE: Pancreatic ductal adenocarcinoma (PDAC) is associated with a poor prognosis. Multianalyte signatures, including liquid biopsy and traditional clinical variables, have shown promise for improving prognostication in other solid tumors but have not yet been rigorously assessed for PDAC. MATERIALS AND METHODS: We performed a prospective cohort study of patients with newly diagnosed locally advanced pancreatic cancer (LAPC) or metastatic PDAC (mPDAC) who were planned to undergo systemic therapy. We collected peripheral blood before systemic therapy and assessed circulating tumor cells (CTCs), cell-free DNA concentration (cfDNA), and circulating tumor KRAS (ctKRAS)-variant allele fraction (VAF). Association of variables with overall survival (OS) was assessed in univariate and multivariate survival analysis, and comparisons were made between models containing liquid biopsy variables combined with traditional clinical prognostic variables versus models containing traditional clinical prognostic variables alone. RESULTS: One hundred four patients, 40 with LAPC and 64 with mPDAC, were enrolled. CTCs, cfDNA concentration, and ctKRAS VAF were all significantly higher in patients with mPDAC than patients with LAPC. ctKRAS VAF (cube root; 0.05 unit increments; hazard ratio, 1.11; 95% CI, 1.03 to 1.21; P = .01), and CTCs ≥ 1/mL (hazard ratio, 2.22; 95% CI, 1.34 to 3.69; P = .002) were significantly associated with worse OS in multivariate analysis while cfDNA concentration was not. A model selected by backward selection containing traditional clinical variables plus liquid biopsy variables had better discrimination of OS compared with a model containing traditional clinical variables alone (optimism-corrected Harrell's C-statistic 0.725 v 0.681). CONCLUSION: A multianalyte prognostic signature containing CTCs, ctKRAS, and cfDNA concentration outperformed a model containing traditional clinical variables alone suggesting that CTCs, ctKRAS, and cfDNA provide prognostic information complementary to traditional clinical variables in advanced PDAC.
Asunto(s)
Adenocarcinoma , Carcinoma Ductal Pancreático , Ácidos Nucleicos Libres de Células , ADN Tumoral Circulante , Células Neoplásicas Circulantes , Neoplasias Pancreáticas , Adenocarcinoma/genética , Biomarcadores de Tumor/genética , Carcinoma Ductal Pancreático/genética , Ácidos Nucleicos Libres de Células/genética , ADN Tumoral Circulante/genética , Humanos , Células Neoplásicas Circulantes/patología , Neoplasias Pancreáticas/diagnóstico , Pronóstico , Estudios Prospectivos , Neoplasias PancreáticasRESUMEN
PURPOSE: As immune checkpoint inhibitors (ICI) become increasingly used in frontline settings, identifying early indicators of response is needed. Recent studies suggest a role for circulating tumor DNA (ctDNA) in monitoring response to ICI, but uncertainty exists in the generalizability of these studies. Here, the role of ctDNA for monitoring response to ICI is assessed through a standardized approach by assessing clinical trial data from five independent studies. PATIENTS AND METHODS: Patient-level clinical and ctDNA data were pooled and harmonized from 200 patients across five independent clinical trials investigating the treatment of patients with non-small-cell lung cancer with programmed cell death-1 (PD-1)/programmed death ligand-1 (PD-L1)-directed monotherapy or in combination with chemotherapy. CtDNA levels were measured using different ctDNA assays across the studies. Maximum variant allele frequencies were calculated using all somatic tumor-derived variants in each unique patient sample to correlate ctDNA changes with overall survival (OS) and progression-free survival (PFS). RESULTS: We observed strong associations between reductions in ctDNA levels from on-treatment liquid biopsies with improved OS (OS; hazard ratio, 2.28; 95% CI, 1.62 to 3.20; P < .001) and PFS (PFS; hazard ratio 1.76; 95% CI, 1.31 to 2.36; P < .001). Changes in the maximum variant allele frequencies ctDNA values showed strong association across different outcomes. CONCLUSION: In this pooled analysis of five independent clinical trials, consistent and robust associations between reductions in ctDNA and outcomes were found across multiple end points assessed in patients with non-small-cell lung cancer treated with an ICI. Additional tumor types, stages, and drug classes should be included in future analyses to further validate this. CtDNA may serve as an important tool in clinical development and an early indicator of treatment benefit.
Asunto(s)
Antineoplásicos Inmunológicos , Carcinoma de Pulmón de Células no Pequeñas , ADN Tumoral Circulante , Neoplasias Pulmonares , Antineoplásicos Inmunológicos/uso terapéutico , Biomarcadores de Tumor/genética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , ADN Tumoral Circulante/genética , Ensayos Clínicos como Asunto , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , PronósticoRESUMEN
We aim to determine the feasibility of a novel radiomic biomarker that can integrate with other established clinical prognostic factors to predict progression-free survival (PFS) in patients with non-small cell lung cancer (NSCLC) undergoing first-line immunotherapy. Our study includes 107 patients with stage 4 NSCLC treated with pembrolizumab-based therapy (monotherapy: 30%, combination chemotherapy: 70%). The ITK-SNAP software was used for 3D tumor volume segmentation from pre-therapy CT scans. Radiomic features (n = 102) were extracted using the CaPTk software. Impact of heterogeneity introduced by image physical dimensions (voxel spacing parameters) and acquisition parameters (contrast enhancement and CT reconstruction kernel) was mitigated by resampling the images to the minimum voxel spacing parameters and harmonization by a nested ComBat technique. This technique was initialized with radiomic features, clinical factors of age, sex, race, PD-L1 expression, ECOG status, body mass index (BMI), smoking status, recurrence event and months of progression-free survival, and image acquisition parameters as batch variables. Two phenotypes were identified using unsupervised hierarchical clustering of harmonized features. Prognostic factors, including PDL1 expression, ECOG status, BMI and smoking status, were combined with radiomic phenotypes in Cox regression models of PFS and Kaplan Meier (KM) curve-fitting. Cox model based on clinical factors had a c-statistic of 0.57, which increased to 0.63 upon addition of phenotypes derived from harmonized features. There were statistically significant differences in survival outcomes stratified by clinical covariates, as measured by the log-rank test (p = 0.034), which improved upon addition of phenotypes (p = 0.00022). We found that mitigation of heterogeneity by image resampling and nested ComBat harmonization improves prognostic value of phenotypes, resulting in better prediction of PFS when added to other prognostic variables.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Biomarcadores , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Humanos , Inmunoterapia/métodos , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/tratamiento farmacológico , Supervivencia sin ProgresiónRESUMEN
Liquid biopsy is the analysis of materials shed by tumors into circulation, such as circulating tumor cells, nucleic acids, and extracellular vesicles (EVs), for the diagnosis and management of cancer. These assays have rapidly evolved with recent FDA approvals of single biomarkers in patients with advanced metastatic disease. However, they have lacked sensitivity or specificity as a diagnostic in early-stage cancer, primarily due to low concentrations in circulating plasma. EVs, membrane-enclosed nanoscale vesicles shed by tumor and other cells into circulation, are a promising liquid biopsy analyte owing to their protein and nucleic acid cargoes carried from their mother cells, their surface proteins specific to their cells of origin, and their higher concentrations over other noninvasive biomarkers across disease stages. Recently, the combination of EVs with non-EV biomarkers has driven improvements in sensitivity and accuracy; this has been fueled by the use of machine learning (ML) to algorithmically identify and combine multiple biomarkers into a composite biomarker for clinical prediction. This review presents an analysis of EV isolation methods, surveys approaches for and issues with using ML in multianalyte EV datasets, and describes best practices for bringing multianalyte liquid biopsy to clinical implementation.