Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cancer Immunol Res ; 8(7): 844-850, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32321776

RESUMEN

Prostate cancer is the second leading cause of cancer-related death in men. Despite having a relatively lower tumor mutational burden than most tumor types, multiple gene fusions such as TMPRSS2:ERG have been characterized and linked to more aggressive disease. Individual tumor samples have been found to contain multiple fusions, and it remains unknown whether these fusions increase tumor immunogenicity. Here, we investigated the role of fusion burden on the prevalence and expression of key molecular and immune effectors in prostate cancer tissue specimens that represented the different stages of disease progression and androgen sensitivity, including hormone-sensitive and castration-resistant prostate cancer. We found that tumor fusion burden was inversely correlated with tumor mutational burden and not associated with disease stage. High fusion burden correlated with high immune infiltration, PD-L1 expression on immune cells, and immune signatures, representing activation of T cells and M1 macrophages. High fusion burden inversely correlated with immune-suppressive signatures. Our findings suggest that high tumor fusion burden may be a more appropriate biomarker than tumor mutational burden in prostate cancer, as it more closely associates with immunogenicity, and suggests that tumors with high fusion burden could be potential candidates for immunotherapeutic agents.


Asunto(s)
Antígeno B7-H1/genética , Biomarcadores de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Mutación , Fusión de Oncogenes , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/inmunología , Antígeno B7-H1/inmunología , Biomarcadores de Tumor/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Macrófagos/inmunología , Masculino , Clasificación del Tumor , Estadificación de Neoplasias , Neoplasias de la Próstata/patología , RNA-Seq/métodos
2.
Clin Cancer Res ; 26(3): 657-668, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31611282

RESUMEN

PURPOSE: Emerging data suggest immune checkpoint inhibitors have reduced efficacy in heavily pretreated triple-negative breast cancers (TNBC), but underlying mechanisms are poorly understood. To better understand the phenotypic evolution of TNBCs, we studied the genomic and transcriptomic profiles of paired tumors from patients with TNBC. EXPERIMENTAL DESIGN: We collected paired primary and metastatic TNBC specimens from 43 patients and performed targeted exome sequencing and whole-transcriptome sequencing. From these efforts, we ascertained somatic mutation profiles, tumor mutational burden (TMB), TNBC molecular subtypes, and immune-related gene expression patterns. Stromal tumor-infiltrating lymphocytes (stromal TIL), recurrence-free survival, and overall survival were also analyzed. RESULTS: We observed a typical TNBC mutational landscape with minimal shifts in copy number or TMB over time. However, there were notable TNBC molecular subtype shifts, including increases in the Lehmann/Pietenpol-defined basal-like 1 (BL1, 11.4%-22.6%) and mesenchymal (M, 11.4%-22.6%) phenotypes, and a decrease in the immunomodulatory phenotype (IM, 31.4%-3.2%). The Burstein-defined basal-like immune-activated phenotype was also decreased (BLIA, 42.2%-17.2%). Among downregulated genes from metastases, we saw enrichment of immune-related Kyoto Encyclopedia of Genes and Genomes pathways and gene ontology (GO) terms, and decreased expression of immunomodulatory gene signatures (P < 0.03) and percent stromal TILs (P = 0.03). There was no clear association between stromal TILs and survival. CONCLUSIONS: We observed few mutational shifts, but largely consistent transcriptomic shifts in longitudinally paired TNBCs. Transcriptomic and IHC analyses revealed significantly reduced immune-activating gene expression signatures and TILs in recurrent TNBCs. These data may explain the observed lack of efficacy of immunotherapeutic agents in heavily pretreated TNBCs. Further studies are ongoing to better understand these initial observations.See related commentary by Savas and Loi, p. 526.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Biomarcadores de Tumor , Humanos , Linfocitos Infiltrantes de Tumor , Fenotipo , Transcriptoma
3.
Elife ; 62017 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-28346141

RESUMEN

The anamniote lateral line system, comprising mechanosensory neuromasts and electrosensory ampullary organs, is a useful model for investigating the developmental and evolutionary diversification of different organs and cell types. Zebrafish neuromast development is increasingly well understood, but neither zebrafish nor Xenopus is electroreceptive and our molecular understanding of ampullary organ development is rudimentary. We have used RNA-seq to generate a lateral line-enriched gene-set from late-larval paddlefish (Polyodon spathula). Validation of a subset reveals expression in developing ampullary organs of transcription factor genes critical for hair cell development, and genes essential for glutamate release at hair cell ribbon synapses, suggesting close developmental, physiological and evolutionary links between non-teleost electroreceptors and hair cells. We identify an ampullary organ-specific proneural transcription factor, and candidates for the voltage-sensing L-type Cav channel and rectifying Kv channel predicted from skate (cartilaginous fish) ampullary organ electrophysiology. Overall, our results illuminate ampullary organ development, physiology and evolution.


Asunto(s)
Estructuras Animales/embriología , Regulación del Desarrollo de la Expresión Génica , Vertebrados/embriología , Animales , Perfilación de la Expresión Génica , Análisis de Secuencia de ARN
4.
Bioessays ; 26(7): 711-4, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15221852

RESUMEN

Drosophila neural progenitor cells, or neuroblasts, alter their transcriptional profile over time to produce different neural cell types. A recent paper by Pearson and Doe shows that older neuroblasts can be reprogrammed to behave like young neuroblasts, and to produce early neural cell types, simply by expressing the transcription factor, Hunchback. The authors show that competence to respond to Hunchback diminishes over time. Manipulating neural progenitors in this way may have important implications for therapeutic uses of neural stem cells.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/embriología , Neuronas/citología , Células Madre/citología , Factores de Transcripción/metabolismo , Animales , Linaje de la Célula , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Sistema Nervioso/citología , Sistema Nervioso/embriología , Neuronas/metabolismo , Células Madre/metabolismo , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...