Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-18353188

RESUMEN

BACKGROUND: SSeCKS (Src SupprEssed C Kinase Substrate) is a proposed protein kinase C substrate/A kinase anchoring protein (AKAP) that has recently been characterized in the rat peripheral nervous system. It has been shown that approximately 40% of small primary sensory neurons contain SSeCKS-immunoreactivity in a population largely separate from substance P (95.2%), calcitonin gene related peptide (95.3%), or fluoride resistant acid phosphatase (55.0%) labeled cells. In the spinal cord, it was found that SSeCKS-immunoreactive axon collaterals terminate in the dorsal third of lamina II outer in a region similar to that of unmyelinated C-, or small diameter myelinated Adelta-, fibers. However, the precise characterization of the anatomical profile of the primary sensory neurons containing SSeCKS remains to be determined. Here, immunohistochemical labeling at the light and ultrastructural level is used to clarify the myelination status of SSeCKS-containing sensory neuron axons and to further clarify the morphometric, and provide insight into the functional, classification of SSeCKS-IR sensory neurons. METHODS: Colocalization studies of SSeCKS with myelination markers, ultrastructural localization of SSeCKS labeling and ablation of largely unmyelinated sensory fibers by neonatal capsaicin administration were all used to establish whether SSeCKS containing sensory neurons represent a subpopulation of unmyelinated primary sensory C-fibers. RESULTS: Double labeling studies of SSeCKS with CNPase in the dorsal horn and Pzero in the periphery showed that SSeCKS immunoreactivity was observed predominantly in association with unmyelinated primary sensory fibers. At the ultrastructural level, SSeCKS immunoreactivity was most commonly associated with axonal membrane margins of unmyelinated fibers. In capsaicin treated rats, SSeCKS immunoreactivity was essentially obliterated in the dorsal horn while in dorsal root ganglia quantitative analysis revealed a 43% reduction in the number of SSeCKS-labeled cells. This attenuation is concomitant with a decrease in fluoride-resistant acid phosphatase labeled fibers in the spinal cord dorsal horn and small neuronal somata in sensory ganglia. CONCLUSION: These results demonstrate that SSeCKS is primarily localized within a distinct subpopulation of small diameter, largely unmyelinated C-fiber primary sensory neurons putatively involved in nociception.

2.
Artículo en Inglés | MEDLINE | ID: mdl-17459160

RESUMEN

Peripheral sensory diabetic neuropathy is characterized by morphological, electrophysiological and neurochemical changes to a subpopulation of primary afferent neurons. Here, we utilized a transgenic mouse model of diabetes (OVE26) and age-matched controls to histologically examine the effect of chronic hyperglycemia on the activity or abundance of the enzymes acid phosphatase, cytochrome oxidase and NADPH-diaphorase in primary sensory neuron perikarya and the dorsal horn of the spinal cord. Quantitative densitometric characterization of enzyme reaction product revealed significant differences between diabetic, compared to control, animals for all three enzymes. Levels of acid phosphatase reaction product were found to be significantly reduced in both small diameter primary sensory somata and the dorsal horn. Cytochrome oxidase activity was found to be significantly lower in small primary sensory somata while NADPH-diaphorase labeling was found to be significantly higher in small primary sensory somata and significantly lower in the dorsal horn. In addition to these observed biochemical changes, ratiometric analysis of the number of small versus large diameter primary sensory perikarya in diabetic and control animals demonstrated a quantifiable decrease in the number of small diameter cells in the spinal ganglia of diabetic mice. These results suggest that the OVE26 model of diabetes mellitus produces an identifiable disturbance in specific metabolic pathways of select cells in the sensory nervous system and that this dysfunction may reflect the progression of a demonstrated cell loss.

3.
Brain Res Mol Brain Res ; 139(2): 267-76, 2005 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-16005103

RESUMEN

The CA1 region of the rat hippocampus exhibits both alpha and beta adrenergic receptor (AR) responses, however, the specific AR subtypes involved and the neuronal expression patterns for these receptors are not well understood. We have employed single cell real time RT-PCR in conjunction with cell-specific immunohistochemical markers to determine the AR expression patterns for hippocampal neurons located in CA1, a region often implicated in learning and memory processes. Cytoplasmic samples were taken from 55 individual cells located in stratum oriens, pyramidale, or radiatum and reverse transcribed. All successfully amplified pyramidal neuron samples (n = 17) expressed mRNA for the beta2AR, with four cells additionally expressing mRNA for the beta1AR subtype. Positive interneurons from stratum oriens (n = 10) and stratum radiatum (n = 8) expressed mRNA for the alpha1A and/or alpha(1B)AR (n = 9/18) only when coexpressing transcripts for somatostatin. Interneurons containing neuropeptide Y or cholecystokinin (n = 9/18) were not positive for any of the nine AR subtypes, suggesting that CA1 interneuron AR expression is limited to a subset of somatostatin-positive cells. These findings suggest that only a select number of AR subtypes are transcriptionally expressed in CA1 and that these receptors are selective to specific neuronal cell types.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Hipocampo/citología , Neuronas/metabolismo , Receptores Adrenérgicos/metabolismo , Animales , Northern Blotting/métodos , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Proteínas Quinasas Dependientes de Calcio-Calmodulina/genética , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Glutamato Descarboxilasa/genética , Glutamato Descarboxilasa/metabolismo , Inmunohistoquímica/métodos , Isoenzimas/genética , Isoenzimas/metabolismo , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores Adrenérgicos/clasificación , Receptores Adrenérgicos/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Somatostatina/metabolismo
4.
J Pharmacol Exp Ther ; 314(2): 552-60, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15908512

RESUMEN

Norepinephrine is an endogenous neurotransmitter distributed throughout the mammalian brain. In higher cortical structures such as the hippocampus, norepinephrine, via beta adrenergic receptor (AR) activation, has been shown to reinforce the cognitive processes of attention and memory. In this study, we investigated the effect of beta1AR activation on hippocampal cornu ammonis 3 (CA3) network activity. AR expression was first determined using immunocytochemistry with antibodies against beta1ARs, which were found to be exceptionally dense in hippocampal CA3 pyramidal neurons. CA3 network activity was then examined in vitro using field potential recordings in rat brain slices. The selective betaAR agonist isoproterenol caused an enhancement of hippocampal CA3 network activity, as measured by an increase in frequency of spontaneous burst discharges recorded in the CA3 region. In the presence of alphaAR blockade, concentration-response curves for isoproterenol, norepinephrine, and epinephrine suggested that a beta1AR was involved in this response, and the rank order of potency was isoproterenol > norepinephrine = epinephrine. Finally, equilibrium dissociation constants (pK(b)) of subtype-selective betaAR antagonists were functionally determined to characterize the AR subtype modulating hippocampal CA3 activity. The selective beta1AR antagonists atenolol and metoprolol blocked isoproterenol-induced enhancement, with apparent K(b) values of 85 +/- 36 and 3.9 +/- 1.7 nM, respectively. In contrast, the selective beta2AR antagonists ICI-118,551 and butoxamine inhibited isoproterenol-mediated enhancement with apparent low affinities (K(b) of 222 +/- 61 and 9268 +/- 512 nM, respectively). Together, this pharmacological profile of subtype-selective betaAR antagonists indicates that in this model, beta1AR activation is responsible for the enhanced hippocampal CA3 network activity initiated by isoproterenol.


Asunto(s)
Hipocampo/efectos de los fármacos , Red Nerviosa/efectos de los fármacos , Receptores Adrenérgicos beta 1/metabolismo , Agonistas de Receptores Adrenérgicos beta 1 , Antagonistas de Receptores Adrenérgicos beta 1 , Agonistas de Receptores Adrenérgicos beta 2 , Agonistas Adrenérgicos beta/farmacología , Antagonistas Adrenérgicos beta/farmacología , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Catecolaminas/farmacología , Catecolaminas/fisiología , Electrofisiología , Inmunohistoquímica , Indicadores y Reactivos , Isoproterenol/farmacología , Técnicas de Placa-Clamp , Células Piramidales/fisiología , Ratas , Ratas Sprague-Dawley , Análisis de Regresión , Transmisión Sináptica/efectos de los fármacos
5.
Brain Res ; 926(1-2): 126-36, 2002 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-11814414

RESUMEN

SSeCKS (src suppressed C kinase substrate) is a protein kinase C substrate that may play a role in tumor suppression. Recently described in fibroblasts, testes and mesangial cells, SSeCKS may have a function in the control of cell signaling and cytoskeletal arrangement. To investigate the distribution of SSeCKS throughout the nervous system, representative sections of brain, spinal cord and dorsal root ganglia were processed using immunofluorescence. Labeling of central axonal collaterals of primary sensory neurons was observed in the dorsal horn at all spinal levels. SSeCKS-immunoreactivity was also observed in the cerebellum, medulla and sensory ganglia (including trigeminal ganglia). The pattern and distribution of anti-SSeCKS labeling in dorsal root ganglia and the dorsal horn of the spinal cord was similar to that observed for other markers of small primary sensory neurons. Therefore, the coexistence of SSeCKS with substance P, CGRP and acid phosphatase was examined in sections of sensory ganglia, spinal cord and medulla using double immunofluorescent labeling for SSeCKS and substance P/CGRP or sequential SSeCKS immunofluorescence and acid phosphatase/fluoride-resistant acid phosphatase enzyme histochemistry. A small portion of the SSeCKS-labeled cell bodies appeared to represent a subpopulation of substance P (4.8%) and CGRP (4.7%) containing neurons, while 45.0% contained fluoride-resistant acid phosphatase reactivity. These results indicate that SSeCKS has a restricted distribution within the nervous system and that expression of this protein may reflect the specific signaling requirements of a distinct population of nociceptive sensory neurons.


Asunto(s)
Proteínas de Ciclo Celular , Mitógenos/análisis , Neuronas Aferentes/química , Proteínas de Anclaje a la Quinasa A , Fosfatasa Ácida/análisis , Animales , Anticuerpos , Péptido Relacionado con Gen de Calcitonina/análisis , Péptido Relacionado con Gen de Calcitonina/inmunología , Técnica del Anticuerpo Fluorescente , Ganglios Espinales/citología , Masculino , Mitógenos/inmunología , Nociceptores/fisiología , Células PC12 , Ratas , Ratas Sprague-Dawley , Médula Espinal/citología , Sustancia P/análisis , Sustancia P/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA