Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Neurosci ; 27(5): 1000-1013, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38532024

RESUMEN

Although the general location of functional neural networks is similar across individuals, there is vast person-to-person topographic variability. To capture this, we implemented precision brain mapping functional magnetic resonance imaging methods to establish an open-source, method-flexible set of precision functional network atlases-the Masonic Institute for the Developing Brain (MIDB) Precision Brain Atlas. This atlas is an evolving resource comprising 53,273 individual-specific network maps, from more than 9,900 individuals, across ages and cohorts, including the Adolescent Brain Cognitive Development study, the Developmental Human Connectome Project and others. We also generated probabilistic network maps across multiple ages and integration zones (using a new overlapping mapping technique, Overlapping MultiNetwork Imaging). Using regions of high network invariance improved the reproducibility of executive function statistical maps in brain-wide associations compared to group average-based parcellations. Finally, we provide a potential use case for probabilistic maps for targeted neuromodulation. The atlas is expandable to alternative datasets with an online interface encouraging the scientific community to explore and contribute to understanding the human brain function more precisely.


Asunto(s)
Encéfalo , Conectoma , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen , Adolescente , Masculino , Femenino , Adulto , Adulto Joven , Red Nerviosa/fisiología , Red Nerviosa/diagnóstico por imagen , Mapeo Encefálico/métodos , Atlas como Asunto , Niño , Probabilidad , Vías Nerviosas/fisiología
2.
bioRxiv ; 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37961636

RESUMEN

The characterization of individual functional brain organization with Precision Functional Mapping has provided important insights in recent years in adults. However, little is known about the ontogeny of inter-individual differences in brain functional organization during human development, but precise characterization of systems organization during periods of high plasticity might be most influential towards discoveries promoting lifelong health. Collecting and analyzing precision fMRI data during early development has unique challenges and emphasizes the importance of novel methods to improve data acquisition, processing, and analysis strategies in infant samples. Here, we investigate the applicability of two such methods from adult MRI research, multi-echo (ME) data acquisition and thermal noise removal with Noise reduction with distribution corrected principal component analysis (NORDIC), in precision fMRI data from three newborn infants. Compared to an adult example subject, T2* relaxation times calculated from ME data in infants were longer and more variable across the brain, pointing towards ME acquisition being a promising tool for optimizing developmental fMRI. The application of thermal denoising via NORDIC increased tSNR and the overall strength of functional connections as well as the split-half reliability of functional connectivity matrices in infant ME data. While our findings related to NORDIC denoising are coherent with the adult literature and ME data acquisition showed high promise, its application in developmental samples needs further investigation. The present work reveals gaps in our understanding of the best techniques for developmental brain imaging and highlights the need for further developmentally-specific methodological advances and optimizations, towards precision functional imaging in infants.

3.
Dev Cogn Neurosci ; 60: 101231, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36934605

RESUMEN

Resting-state functional connectivity (RSFC) is a powerful tool for characterizing brain changes, but it has yet to reliably predict higher-order cognition. This may be attributed to small effect sizes of such brain-behavior relationships, which can lead to underpowered, variable results when utilizing typical sample sizes (N∼25). Inspired by techniques in genomics, we implement the polyneuro risk score (PNRS) framework - the application of multivariate techniques to RSFC data and validation in an independent sample. Utilizing the Adolescent Brain Cognitive Development® cohort split into two datasets, we explore the framework's ability to reliably capture brain-behavior relationships across 3 cognitive scores - general ability, executive function, learning & memory. The weight and significance of each connection is assessed in the first dataset, and a PNRS is calculated for each participant in the second. Results support the PNRS framework as a suitable methodology to inspect the distribution of connections contributing towards behavior, with explained variance ranging from 1.0 % to 21.4 %. For the outcomes assessed, the framework reveals globally distributed, rather than localized, patterns of predictive connections. Larger samples are likely necessary to systematically identify the specific connections contributing towards complex outcomes. The PNRS framework could be applied translationally to identify neurologically distinct subtypes of neurodevelopmental disorders.


Asunto(s)
Mapeo Encefálico , Cognición , Adolescente , Humanos , Mapeo Encefálico/métodos , Encéfalo , Factores de Riesgo , Función Ejecutiva , Imagen por Resonancia Magnética/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA