Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Clin Invest ; 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38833311

RESUMEN

BACKGROUND: Clinical trials have suggested antitumor activity from PARP inhibition beyond homologous recombination deficiency (HRD). RNASEH2B loss is unrelated to HRD and preclinically sensitizes to PARP inhibition. The current study reports on RNASEH2B protein loss in advanced prostate cancer and its association with RB1 protein loss, clinical outcome and clonal dynamics during treatment with PARP inhibition in a prospective clinical trial. METHODS: Whole tumor biopsies from multiple cohorts of patients with advanced prostate cancer were interrogated using whole-exome sequencing (WES), RNA sequencing (bulk and single nucleus) and immunohistochemistry (IHC) for RNASEH2B and RB1. Biopsies from patients treated with olaparib in the TOPARP-A and TOPARP-B clinical trials were used to evaluate RNASEH2B clonal selection during olaparib treatment. RESULTS: Shallow co-deletion of RNASEH2B and adjacent RB1, co-located at chromosome 13q14, was common, deep co-deletion infrequent, and gene loss associated with lower mRNA expression. In castration-resistant PC (CRPC) biopsies, RNASEH2B and RB1 mRNA expression correlated, but single nucleus RNA sequencing indicated discordant loss of expression. IHC studies showed that loss of the two proteins often occurred independently, arguably due to stochastic second allele loss. Pre- and post-treatment metastatic CRPC (mCRPC) biopsy studies from BRCA1/2 wildtype tumors, treated on the TOPARP phase II trial, indicated that olaparib eradicates RNASEH2B-loss tumor subclones. CONCLUSION: PARP inhibition may benefit men suffering from mCRPC by eradicating tumor subclones with RNASEH2B loss. CLINICALTRIALS: gov NCT01682772FUNDING. AstraZeneca; Cancer Research UK; Medical Research Council; Cancer Research UK; Prostate Cancer UK; Movember Foundation; Prostate Cancer Foundation.

2.
Eur J Cancer ; 205: 114103, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38729054

RESUMEN

BACKGROUND: PTEN loss and aberrations in PI3K/AKT signaling kinases associate with poorer response to abiraterone acetate (AA) in metastatic castration-resistant prostate cancer (mCRPC). In this study, we assessed antitumor activity of the AKT inhibitor capivasertib combined with enzalutamide in mCRPC with prior progression on AA and docetaxel. METHODS: This double-blind, placebo-controlled, randomized phase 2 trial, recruited men ≥ 18 years with progressing mCRPC and performance status 0-2 from 15 UK centers. Randomized participants (1:1) received enzalutamide (160 mg orally, once daily) with capivasertib (400 mg)/ placebo orally, twice daily on an intermittent (4 days on, 3 days off) schedule. Primary endpoint was composite response rate (RR): RECIST 1.1 objective response, ≥ 50 % PSA decrease from baseline, or circulating tumor cell count conversion (from ≥ 5 at baseline to < 5 cells/7.5 mL). Subgroup analyses by PTENIHC status were pre-planned. RESULTS: Overall, 100 participants were randomized (50:50); 95 were evaluable for primary endpoint (47:48); median follow-up was 43 months. RR were 9/47 (19.1 %) enzalutamide/capivasertib and 9/48 (18.8 %) enzalutamide/placebo (absolute difference 0.4 % 90 %CI -12.8 to 13.6, p = 0.58), with similar results in the PTENIHC loss subgroup. Irrespective of treatment, OS was significantly worse for PTENIHC loss (10.1 months [95 %CI: 4.6-13.9] vs 14.8 months [95 %CI: 10.8-18]; p = 0.02). Most common treatment-emergent grade ≥ 3 adverse events for the combination were diarrhea (13 % vs 2 %) and fatigue (10 % vs 6 %). CONCLUSIONS: Combined capivasertib/enzalutamide was well tolerated but didn't significantly improve outcomes from abiraterone pre-treated mCRPC.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica , Benzamidas , Docetaxel , Nitrilos , Feniltiohidantoína , Neoplasias de la Próstata Resistentes a la Castración , Pirimidinas , Humanos , Masculino , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/patología , Feniltiohidantoína/administración & dosificación , Feniltiohidantoína/uso terapéutico , Feniltiohidantoína/efectos adversos , Docetaxel/administración & dosificación , Docetaxel/uso terapéutico , Anciano , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Persona de Mediana Edad , Método Doble Ciego , Pirimidinas/uso terapéutico , Pirimidinas/administración & dosificación , Pirimidinas/efectos adversos , Androstenos/uso terapéutico , Androstenos/administración & dosificación , Anciano de 80 o más Años , Pirroles
3.
Mol Cancer Ther ; 23(6): 791-808, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38412481

RESUMEN

Therapies that abrogate persistent androgen receptor (AR) signaling in castration-resistant prostate cancer (CRPC) remain an unmet clinical need. The N-terminal domain of the AR that drives transcriptional activity in CRPC remains a challenging therapeutic target. Herein we demonstrate that BCL-2-associated athanogene-1 (BAG-1) mRNA is highly expressed and associates with signaling pathways, including AR signaling, that are implicated in the development and progression of CRPC. In addition, interrogation of geometric and physiochemical properties of the BAG domain of BAG-1 isoforms identifies it to be a tractable but challenging drug target. Furthermore, through BAG-1 isoform mouse knockout studies, we confirm that BAG-1 isoforms regulate hormone physiology and that therapies targeting the BAG domain will be associated with limited "on-target" toxicity. Importantly, the postulated inhibitor of BAG-1 isoforms, Thio-2, suppressed AR signaling and other important pathways implicated in the development and progression of CRPC to reduce the growth of treatment-resistant prostate cancer cell lines and patient-derived models. However, the mechanism by which Thio-2 elicits the observed phenotype needs further elucidation as the genomic abrogation of BAG-1 isoforms was unable to recapitulate the Thio-2-mediated phenotype. Overall, these data support the interrogation of related compounds with improved drug-like properties as a novel therapeutic approach in CRPC, and further highlight the clinical potential of treatments that block persistent AR signaling which are currently undergoing clinical evaluation in CRPC.


Asunto(s)
Progresión de la Enfermedad , Neoplasias de la Próstata Resistentes a la Castración , Transducción de Señal , Masculino , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/patología , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Humanos , Animales , Ratones , Transducción de Señal/efectos de los fármacos , Receptores Androgénicos/metabolismo , Línea Celular Tumoral , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proliferación Celular , Ensayos Antitumor por Modelo de Xenoinjerto , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos
4.
Genes Dev ; 38(1-2): 70-94, 2024 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-38316520

RESUMEN

Since genome instability can drive cancer initiation and progression, cells have evolved highly effective and ubiquitous DNA damage response (DDR) programs. However, some cells (for example, in skin) are normally exposed to high levels of DNA-damaging agents. Whether such high-risk cells possess lineage-specific mechanisms that tailor DNA repair to the tissue remains largely unknown. Using melanoma as a model, we show here that the microphthalmia-associated transcription factor MITF, a lineage addition oncogene that coordinates many aspects of melanocyte and melanoma biology, plays a nontranscriptional role in shaping the DDR. On exposure to DNA-damaging agents, MITF is phosphorylated at S325, and its interactome is dramatically remodeled; most transcription cofactors dissociate, and instead MITF interacts with the MRE11-RAD50-NBS1 (MRN) complex. Consequently, cells with high MITF levels accumulate stalled replication forks and display defects in homologous recombination-mediated repair associated with impaired MRN recruitment to DNA damage. In agreement with this, high MITF levels are associated with increased single-nucleotide and copy number variant burdens in melanoma. Significantly, the SUMOylation-defective MITF-E318K melanoma predisposition mutation recapitulates the effects of DNA-PKcs-phosphorylated MITF. Our data suggest that a nontranscriptional function of a lineage-restricted transcription factor contributes to a tissue-specialized modulation of the DDR that can impact cancer initiation.


Asunto(s)
Melanoma , Humanos , Melanoma/genética , Factor de Transcripción Asociado a Microftalmía/genética , Daño del ADN , Inestabilidad Genómica/genética , ADN
5.
Cancer Imaging ; 23(1): 121, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38102655

RESUMEN

BACKGROUND: Bone biopsies in metastatic castrate-resistant prostate cancer (mCRPC) patients can be challenging. This study's objective was to prospectively validate a multiparametric bone MRI (mpBMRI) algorithm to facilitate target lesion selection in mCRPC patients with sclerotic bone disease for subsequent CT-guided bone biopsies. METHODS: 20 CT-guided bone biopsies were prospectively performed between 02/2021 and 11/2021 in 17 mCRPC patients with only sclerotic bone disease. Biopsy targets were selected based on MRI, including diffusion-weighted (DWI) and T1-weighted VIBE Dixon MR images, allowing for calculation of the apparent diffusion coefficient (ADC) and the relative fat-fraction (rFF), respectively. Bone marrow with high DWI signal, ADC < 1100 µm2/s and rFF < 20% was the preferred biopsy target. Tumor content and NGS-feasibility was assessed by a pathologist. Prognostic routine laboratory blood parameters, target lesion size, biopsy tract length, visual CT density, means of HU, ADC and rFF were compared between successful and unsuccessful biopsies (p < 0.05 = significant). RESULTS: Overall, 17/20 (85%) biopsies were tumor-positive and next-generation genomic sequencing (NGS) was feasible in 13/18 (72%) evaluated samples. Neither laboratory parameters, diameter, tract length nor visual CT density grading showed significant differences between a positive versus negative or NGS feasible versus non-feasible biopsy results (each p > 0.137). Lesion mean HU was 387 ± 187 HU in NGS feasible and 493 ± 218 HU in non-feasible biopsies (p = 0.521). For targets fulfilling all MRI selection algorithm criteria, 13/14 (93%) biopsies were tumor-positive and 10/12 (83%) provided NGS adequate tissue. CONCLUSIONS: Multiparametric bone MRI can facilitate target lesion selection for subsequent CT-guided bone biopsy in mCPRC patients with sclerotic metastases. TRIAL REGISTRATION: Committee for Clinical Research of the Royal Marsden Hospital registration number SE1220.


Asunto(s)
Enfermedades Óseas , Neoplasias de la Próstata Resistentes a la Castración , Neoplasias de la Próstata , Masculino , Humanos , Neoplasias de la Próstata Resistentes a la Castración/diagnóstico por imagen , Neoplasias de la Próstata Resistentes a la Castración/patología , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/patología , Biopsia Guiada por Imagen , Tomografía Computarizada por Rayos X , Imagen por Resonancia Magnética/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...