Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Mol Neurobiol ; 55(12): 8856-8868, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29603094

RESUMEN

A missense mutation in HERC1 provokes loss of cerebellar Purkinje cells, tremor, and unstable gait in tambaleante (tbl) mice. Recently, we have shown that before cerebellar degeneration takes place, the tbl mouse suffers from a reduction in the number of vesicles available for release at the neuromuscular junction (NMJ). The aim of the present work was to study to which extent the alteration in HERC1 may affect other cells in the nervous system and how this may influence the motor dysfunction observed in these mice. The functional analysis showed a consistent delay in the propagation of the action potential in mutant mice in comparison with control littermates. Morphological analyses of glial cells in motor axons revealed signs of compact myelin damage as tomacula and local hypermyelination foci. Moreover, we observed an alteration in non-myelinated terminal Schwann cells at the level of the NMJ. Additionally, we found a significant increment of phosphorylated Akt-2 in the sciatic nerve. Based on these findings, we propose a molecular model that could explain how mutated HERC1 in tbl mice affects the myelination process in the peripheral nervous system. Finally, since the myelin abnormalities found in tbl mice are histological hallmarks of neuropathic periphery diseases, tbl mutant mice could be considered as a new mouse model for this type of diseases.


Asunto(s)
Axones/metabolismo , Vaina de Mielina/metabolismo , Sistema Nervioso Periférico/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Potenciales Evocados , Ratones , Ratones Mutantes Neurológicos , Modelos Biológicos , Mutación/genética , Proteína Básica de Mielina/metabolismo , Unión Neuromuscular/metabolismo , Fosforilación , Terminales Presinápticos/efectos de los fármacos , Terminales Presinápticos/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Células de Schwann/metabolismo , Nervio Ciático/patología , Nervio Ciático/ultraestructura , Ubiquitina-Proteína Ligasas/genética
2.
Brain Behav Immun ; 64: 65-70, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28012829

RESUMEN

Somatic LINE-1 (L1) retrotransposition is a source of genomic mosaicism and potential phenotypic diversity among neurons during brain development. In the adult brain, L1 expression can be triggered by different environmental alterations, but its functional role in this context remains unknown. Here we demonstrate a neural activation-dependent increase in the number of L1 retrotransposon insertions in the hippocampus. Using both pharmacologic and genetic approaches in mice, we demonstrate that L1 expression in the adult hippocampus enables long-term memory formation. These results provide experimental evidence that L1 retrotransposition-induced genomic mosaicism is involved in cognitive processes such as memory formation.


Asunto(s)
Hipocampo/metabolismo , Elementos de Nucleótido Esparcido Largo , Memoria a Largo Plazo , Retroelementos , Animales , Genómica , Masculino , Ratones , Mosaicismo
3.
PLoS One ; 6(12): e28927, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22174927

RESUMEN

Defects in the ubiquitin-proteasome system have been related to aging and the development of neurodegenerative disease, although the effects of deficient proteasome activity during early postnatal development are poorly understood. Accordingly, we have assessed how proteasome dysfunction during early postnatal development, induced by administering proteasome inhibitors daily during the first 10 days of life, affects the behaviour of adult mice. We found that this regime of exposure to the proteasome inhibitors MG132 or lactacystin did not produce significant behavioural or morphological changes in the first 15 days of life. However, towards the end of the treatment with proteasome inhibitors, there was a loss of mitochondrial markers and activity, and an increase in DNA oxidation. On reaching adulthood, the memory of mice that were injected with proteasome inhibitors postnatally was impaired in hippocampal and amygdala-dependent tasks, and they suffered motor dysfunction and imbalance. These behavioural deficiencies were correlated with neuronal loss in the hippocampus, amygdala and brainstem, and with diminished adult neurogenesis. Accordingly, impairing proteasome activity at early postnatal ages appears to cause morphological and behavioural alterations in adult mice that resemble those associated with certain neurodegenerative diseases and/or syndromes of mental retardation.


Asunto(s)
Trastornos del Conocimiento/complicaciones , Degeneración Nerviosa/complicaciones , Sistema Nervioso/crecimiento & desarrollo , Sistema Nervioso/patología , Inhibidores de Proteasoma , Amígdala del Cerebelo/efectos de los fármacos , Amígdala del Cerebelo/patología , Amígdala del Cerebelo/fisiopatología , Animales , Animales Recién Nacidos , Ataxia/complicaciones , Ataxia/fisiopatología , Biomarcadores/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Trastornos del Conocimiento/fisiopatología , ADN/metabolismo , Depresión/complicaciones , Depresión/fisiopatología , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/metabolismo , Inhibidores Enzimáticos/administración & dosificación , Inhibidores Enzimáticos/farmacología , Conducta Exploratoria/efectos de los fármacos , Hipocampo/efectos de los fármacos , Hipocampo/patología , Hipocampo/fisiopatología , Leupeptinas/administración & dosificación , Leupeptinas/farmacología , Memoria/efectos de los fármacos , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Actividad Motora/efectos de los fármacos , Degeneración Nerviosa/fisiopatología , Sistema Nervioso/efectos de los fármacos , Oxidación-Reducción/efectos de los fármacos , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Ubiquitinadas/metabolismo
4.
PLoS One ; 6(9): e24915, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21966384

RESUMEN

Synaptic plasticity involves short- and long-term events, although the molecular mechanisms that underlie these processes are not fully understood. The transient A-type K(+) current (I(A)) controls the excitability of the dendrites from CA1 pyramidal neurons by regulating the back-propagation of action potentials and shaping synaptic input. Here, we have studied how decreases in I(A) affect cognitive processes and synaptic plasticity. Using wild-type mice treated with 4-AP, an I(A) inhibitor, and mice lacking the DREAM protein, a transcriptional repressor and modulator of the I(A), we demonstrate that impairment of I(A) decreases the stimulation threshold for learning and the induction of early-LTP. Hippocampal electrical recordings in both models revealed alterations in basal electrical oscillatory properties toward low-theta frequencies. In addition, we demonstrated that the facilitated learning induced by decreased I(A) requires the activation of NMDA receptors containing the NR2B subunit. Together, these findings point to a balance between the I(A) and the activity of NR2B-containing NMDA receptors in the regulation of learning.


Asunto(s)
Región CA1 Hipocampal/metabolismo , Plasticidad Neuronal , Receptores de N-Metil-D-Aspartato/genética , Potenciales de Acción , Animales , Conducta Animal , Electrofisiología/métodos , Memoria , Ratones , Ratones Transgénicos , Modelos Biológicos , Modelos Genéticos , Oscilometría/métodos , Potasio/metabolismo , Estructura Terciaria de Proteína , Receptores de N-Metil-D-Aspartato/metabolismo , Transmisión Sináptica
5.
Hippocampus ; 21(1): 22-32, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19921704

RESUMEN

Aging, mental retardation, number of psychiatric and neurological disorders are all associated with learning and memory impairments. As the underlying causes of such conditions are very heterogeneous, manipulations that can enhance learning and memory in mice under different circumstances might be able to overcome the cognitive deficits in patients. The M-current regulates neuronal excitability and action potential firing, suggesting that its inhibition may increase cognitive capacities. We demonstrate that XE991, a specific M-current blocker, enhances learning and memory in healthy mice. This effect may be achieved by altering basal hippocampal synaptic activity and by diminishing the stimulation threshold for long-term changes in synaptic efficacy and learning-related gene expression. We also show that training sessions regulate the M-current by transiently decreasing the levels of KCNQ/Kv7.3 protein, a pivotal subunit for the M-current. Furthermore, we found that XE991 can revert the cognitive impairment associated with acetylcholine depletion and the neurodegeneration induced by kainic acid. Together, these results show that inhibition of the M-current as a general strategy may be useful to enhance cognitive capacities in healthy and aging individuals, as well as in those with neurodegenerative diseases.


Asunto(s)
Antracenos/farmacología , Encéfalo/fisiología , Trastornos del Conocimiento/fisiopatología , Canal de Potasio KCNQ3/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Bloqueadores de los Canales de Potasio/farmacología , Animales , Encéfalo/efectos de los fármacos , Modelos Animales de Enfermedad , Electrofisiología , Perfilación de la Expresión Génica , Inmunohistoquímica , Canal de Potasio KCNQ3/biosíntesis , Aprendizaje/efectos de los fármacos , Aprendizaje/fisiología , Masculino , Memoria/efectos de los fármacos , Memoria/fisiología , Ratones , Plasticidad Neuronal/fisiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología
6.
J Neurosci ; 30(40): 13305-13, 2010 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-20926656

RESUMEN

Memory formation requires changes in gene expression, which are regulated by the activation of transcription factors and by changes in epigenetic factors. Poly[ADP]-ribosylation of nuclear proteins has been postulated as a chromatin modification involved in memory consolidation, although the mechanisms involved are not well characterized. Here we demonstrate that poly[ADP]-ribose polymerase 1 (PARP-1) activity and the poly[ADP]-ribosylation of proteins over a specific time course is required for the changes in synaptic plasticity related to memory stabilization in mice. At the molecular level, histone H1 poly[ADP]-ribosylation was evident in the hippocampus after the acquisition period, and it was selectively released in a PARP-1-dependent manner at the promoters of cAMP response element-binding protein and nuclear factor-κB dependent genes associated with learning and memory. These findings suggest that histone H1 poly[ADP]-ribosylation, and its loss at specific loci, is an epigenetic mechanism involved in the reprogramming of neuronal gene expression required for memory consolidation.


Asunto(s)
Cromatina/metabolismo , Histonas/metabolismo , Aprendizaje/fisiología , Poli Adenosina Difosfato Ribosa/metabolismo , Proteínas/metabolismo , Animales , Cromatina/genética , Epigénesis Genética/genética , Conducta Exploratoria/fisiología , Regulación de la Expresión Génica/fisiología , Sitios Genéticos/genética , Hipocampo/citología , Hipocampo/metabolismo , Hipocampo/fisiología , Histonas/fisiología , Masculino , Memoria/fisiología , Ratones , Plasticidad Neuronal/genética , Plasticidad Neuronal/fisiología , Poli(ADP-Ribosa) Polimerasa-1 , Poli Adenosina Difosfato Ribosa/fisiología , Poli(ADP-Ribosa) Polimerasas/metabolismo , Poli(ADP-Ribosa) Polimerasas/fisiología , Regiones Promotoras Genéticas/genética , Proteínas/fisiología , Transmisión Sináptica/genética
7.
Curr Biol ; 19(1): 54-60, 2009 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-19110430

RESUMEN

Memory deficits in aging affect millions of people and are often disturbing to those concerned. Dissection of the molecular control of learning and memory is paramount to understand and possibly enhance cognitive functions. Old-age memory loss also has been recently linked to altered Ca(2+) homeostasis. We have previously identified DREAM (downstream regulatory element antagonistic modulator), a member of the neuronal Ca(2+) sensor superfamily of EF-hand proteins, with specific roles in different cell compartments. In the nucleus, DREAM is a Ca(2+)-dependent transcriptional repressor, binding to specific DNA signatures, or interacting with nucleoproteins regulating their transcriptional properties. Also, we and others have shown that dream mutant (dream(-/-)) mice exhibit marked analgesia. Here we report that dream(-/-) mice exhibit markedly enhanced learning and synaptic plasticity related to improved cognition. Mechanistically, DREAM functions as a negative regulator of the key memory factor CREB in a Ca(2+)-dependent manner, and loss of DREAM facilitates CREB-dependent transcription during learning. Intriguingly, 18-month-old dream(-/-) mice display learning and memory capacities similar to young mice. Moreover, loss of DREAM protects from brain degeneration in aging. These data identify the Ca(2+)-regulated "pain gene" DREAM as a novel key regulator of memory and brain aging.


Asunto(s)
Envejecimiento/fisiología , Proteínas de Interacción con los Canales Kv/deficiencia , Aprendizaje/fisiología , Memoria/fisiología , Envejecimiento/genética , Análisis de Varianza , Animales , Western Blotting , Calcio/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , ADN/metabolismo , Cartilla de ADN/genética , Ensayo de Cambio de Movilidad Electroforética , Electrofisiología , Hipocampo/fisiología , Inmunohistoquímica , Proteínas de Interacción con los Canales Kv/genética , Proteínas de Interacción con los Canales Kv/metabolismo , Ratones , Ratones Noqueados , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
8.
Mol Neurobiol ; 38(2): 167-77, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18759009

RESUMEN

Aging is associated with the decline of cognitive properties. This situation is magnified when neurodegenerative processes associated with aging appear in human patients. Neuronal synaptic plasticity events underlie cognitive properties in the central nervous system. Caloric restriction (CR; either a decrease in food intake or an intermittent fasting diet) can extend life span and increase disease resistance. Recent studies have shown that CR can have profound effects on brain function and vulnerability to injury and disease. Moreover, CR can stimulate the production of new neurons from stem cells (neurogenesis) and can enhance synaptic plasticity, which modulate pain sensation, enhance cognitive function, and may increase the ability of the brain to resist aging. The beneficial effects of CR appear to be the result of a cellular stress response stimulating the production of proteins that enhance neuronal plasticity and resistance to oxidative and metabolic insults; they include neurotrophic factors, neurotransmitter receptors, protein chaperones, and mitochondrial biosynthesis regulators. In this review, we will present and discuss the effect of CR in synaptic processes underlying analgesia and cognitive improvement in healthy, sick, and aging animals. We will also discuss the possible role of mitochondrial biogenesis induced by CR in regulation of neuronal synaptic plasticity.


Asunto(s)
Restricción Calórica , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Sinapsis/metabolismo , Envejecimiento/fisiología , Analgesia , Animales , Humanos , Aprendizaje/fisiología , Mitocondrias/metabolismo , Enfermedades Neurodegenerativas/dietoterapia , Enfermedades Neurodegenerativas/fisiopatología
9.
J Neurosci ; 27(38): 10185-95, 2007 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-17881524

RESUMEN

One of the main focal points of aging research is the search for treatments that will prevent or ameliorate the learning and memory deficiencies associated with aging. Here we have examined the effects of maintaining mature mice on a long-term intermittent fasting diet (L-IFD). We found that L-IFD enhances learning and consolidation processes. We also assessed the long-term changes in synaptic efficiency in these animals. L-IFD mice showed an increase in low-theta-band oscillations, paired-pulse facilitation, and facilitation of long-term synaptic plasticity in the hippocampus with respect to mice fed ad libitum. In addition, we found an increase in the expression of the NMDA receptor subunit NR2B in some brain areas of L-IFD mice. Specific antagonism of this subunit in the hippocampus reversed the beneficial effects of L-IFD. These data provide a molecular and cellular mechanism by which L-IFD may enhance cognition, ameliorating some aging-associated cognitive deficits.


Asunto(s)
Restricción Calórica , Aprendizaje/fisiología , Plasticidad Neuronal/fisiología , Receptores de N-Metil-D-Aspartato/biosíntesis , Sinapsis/metabolismo , Animales , Restricción Calórica/métodos , Condicionamiento Psicológico/fisiología , Masculino , Ratones , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/fisiología , Sinapsis/genética
10.
Learn Mem ; 12(6): 557-63, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16287719

RESUMEN

We studied the effects of a selective lesion in rats, with 192-IgG-saporin, of the cholinergic neurons located in the medial septum/diagonal band (MSDB) complex on the acquisition of classical and instrumental conditioning paradigms. The MSDB lesion induced a marked deficit in the acquisition, but not in the retrieval, of eyeblink classical conditioning using a trace paradigm. Such a deficit was task-selective, as lesioned rats were able to acquire a fixed-interval operant conditioning as controls, and was not due to nonspecific motor alterations, because spontaneous locomotion and blink reflexes were not disturbed by the MSDB lesion. The deficit in the acquisition of a trace eyeblink classical conditioning was reverted by the systemic administration of carbachol, a nonselective cholinergic muscarinic agonist, but not by lobeline, a nicotinic agonist. These results suggest a key role of muscarinic denervation on the acquisition of new motor abilities using trace classical conditioning procedures. It might also be suggested that muscarinic agents would be useful for the amelioration of some associative learning deficits observed at early stages in patients with Alzheimer's disease.


Asunto(s)
Fibras Colinérgicas/fisiología , Condicionamiento Palpebral/fisiología , Párpados/inervación , Hipocampo/fisiología , Núcleos Septales/fisiología , Animales , Aprendizaje por Asociación/fisiología , Hipocampo/citología , Masculino , Vías Nerviosas/citología , Vías Nerviosas/fisiología , Distribución Aleatoria , Ratas , Ratas Wistar , Receptores Muscarínicos/fisiología , Núcleos Septales/citología
11.
J Neurosci ; 25(8): 2070-80, 2005 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-15728847

RESUMEN

Memory, as measured by changes in an animal's behavior some time after learning, is a reflection of many processes. Here, using a trace paradigm, in mice we show that de novo protein synthesis is required for acquisition, consolidation, reconsolidation, and extinction of classically conditioned eyelid responses. Two critical periods of protein synthesis have been found: the first, during training, the blocking of which impaired acquisition; and the second, lasting the first 4 h after training, the blocking of which impaired consolidation. The process of reconsolidation was sensitive to protein synthesis inhibition if anisomycin was injected before or just after the reactivation session. Furthermore, extinction was also dependent on protein synthesis, following the same temporal course as that followed during acquisition and consolidation. This last fact reinforces the idea that extinction is an active learning process rather than a passive event of forgetting. Together, these findings demonstrate that all of the different stages of memory formation involved in the classical conditioning of eyelid responses are dependent on protein synthesis.


Asunto(s)
Aprendizaje por Asociación/fisiología , Parpadeo/fisiología , Encéfalo/efectos de los fármacos , Condicionamiento Clásico/fisiología , Extinción Psicológica/fisiología , Párpados/fisiología , Regulación de la Expresión Génica , Memoria/fisiología , Proteínas del Tejido Nervioso/biosíntesis , Animales , Anisomicina/administración & dosificación , Anisomicina/farmacología , Aprendizaje por Asociación/efectos de los fármacos , Parpadeo/efectos de los fármacos , Encéfalo/metabolismo , Condicionamiento Clásico/efectos de los fármacos , Convulsivantes/farmacología , Proteínas de Unión al ADN , Esquema de Medicación , Electromiografía , Electrochoque , Extinción Psicológica/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Genes fos , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Ácido Kaínico/farmacología , Locomoción , Memoria/efectos de los fármacos , Memoria a Corto Plazo/efectos de los fármacos , Memoria a Corto Plazo/fisiología , Ratones , Proteínas del Tejido Nervioso/análisis , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/análisis , Inhibidores de la Síntesis de la Proteína/administración & dosificación , Inhibidores de la Síntesis de la Proteína/farmacología , Proteínas Proto-Oncogénicas c-fos/biosíntesis , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA