Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 15(10)2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37242899

RESUMEN

Articular cartilage is a specialized tissue that provides a smooth surface for joint movement and load transmission. Unfortunately, it has limited regenerative capacity. Tissue engineering, combining different cell types, scaffolds, growth factors, and physical stimulation has become an alternative for repairing and regenerating articular cartilage. Dental Follicle Mesenchymal Stem Cells (DFMSCs) are attractive candidates for cartilage tissue engineering because of their ability to differentiate into chondrocytes, on the other hand, the polymers blend like Polycaprolactone (PCL) and Poly Lactic-co-Glycolic Acid (PLGA) have shown promise given their mechanical properties and biocompatibility. In this work, the physicochemical properties of polymer blends were evaluated by Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscope (SEM) and were positive for both techniques. The DFMSCs demonstrated stemness by flow cytometry. The scaffold showed to be a non-toxic effect when we evaluated it with Alamar blue, and the samples were analyzed using SEM and phalloidin staining to evaluate cell adhesion to the scaffold. The synthesis of glycosaminoglycans was positive on the construct in vitro. Finally, the PCL/PLGA scaffold showed a better repair capacity than two commercial compounds, when tested in a chondral defect rat model. These results suggest that the PCL/PLGA (80:20) scaffold may be suitable for applications in the tissue engineering of articular hyaline cartilage.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...