RESUMEN
Oat crown rust, caused by f. sp. , is a major constraint to oat ( L.) production in many parts of the world. In this first comprehensive multienvironment genome-wide association map of oat crown rust, we used 2972 single-nucleotide polymorphisms (SNPs) genotyped on 631 oat lines for association mapping of quantitative trait loci (QTL). Seedling reaction to crown rust in these lines was assessed as infection type (IT) with each of 10 crown rust isolates. Adult plant reaction was assessed in the field in a total of 10 location-years as percentage severity (SV) and as infection reaction (IR) in a 0-to-1 scale. Overall, 29 SNPs on 12 linkage groups were predictive of crown rust reaction in at least one experiment at a genome-wide level of statistical significance. The QTL identified here include those in regions previously shown to be linked with seedling resistance genes , , , , , and and also with adult-plant resistance and adaptation-related QTL. In addition, QTL on linkage groups Mrg03, Mrg08, and Mrg23 were identified in regions not previously associated with crown rust resistance. Evaluation of marker genotypes in a set of crown rust differential lines supported as the identity of . The SNPs with rare alleles associated with lower disease scores may be suitable for use in marker-assisted selection of oat lines for crown rust resistance.
Asunto(s)
Avena/genética , Avena/microbiología , Basidiomycota/patogenicidad , Genoma de Planta , Estudio de Asociación del Genoma Completo , Ligamiento Genético , Polimorfismo de Nucleótido Simple , Sitios de Carácter CuantitativoRESUMEN
Six hundred thirty five oat ( L.) lines and 4561 single-nucleotide polymorphism (SNP) loci were used to evaluate population structure, linkage disequilibrium (LD), and genotype-phenotype association with heading date. The first five principal components (PCs) accounted for 25.3% of genetic variation. Neither the eigenvalues of the first 25 PCs nor the cross-validation errors from = 1 to 20 model-based analyses suggested a structured population. However, the PC and = 2 model-based analyses supported clustering of lines on spring oat vs. southern United States origin, accounting for 16% of genetic variation ( < 0.0001). Single-locus -statistic () in the highest 1% of the distribution suggested linkage groups that may be differentiated between the two population subgroups. Population structure and kinship-corrected LD of = 0.10 was observed at an average pairwise distance of 0.44 cM (0.71 and 2.64 cM within spring and southern oat, respectively). On most linkage groups LD decay was slower within southern lines than within the spring lines. A notable exception was found on linkage group Mrg28, where LD decay was substantially slower in the spring subpopulation. It is speculated that this may be caused by a heterogeneous translocation event on this chromosome. Association with heading date was most consistent across location-years on linkage groups Mrg02, Mrg12, Mrg13, and Mrg24.
Asunto(s)
Adaptación Fisiológica/genética , Avena/genética , Metagenómica , Estudios de Asociación Genética , Variación Genética , Desequilibrio de Ligamiento , Polimorfismo de Nucleótido Simple/genéticaRESUMEN
Developing oat cultivars with partial resistance to crown rust would be beneficial and cost-effective for disease management. Two recombinant inbred-line populations were generated by crossing the susceptible cultivar Provena with two partially resistant sources, CDC Boyer and breeding line 94197A1-9-2-2-2-5. A third mapping population was generated by crossing the partially resistant sources to validate the quantitative trait locus (QTL) results. The three populations were evaluated for crown rust severity in the field at Louisiana State University (LSU) in 2009 and 2010 and at the Cereal Disease Laboratory (CDL) in St. Paul, MN, in 2009, 2010, and 2011. An iSelect platform assay containing 5,744 oat single nucleotide polymorphisms was used to genotype the populations. From the 2009 CDL test, linkage analyses revealed two QTLs for partial resistance in the Provena/CDC Boyer population on chromosome 19A. One of the 19A QTLs was also detected in the 2009 LSU test. Another QTL was detected on chromosome 12D in the CDL 2009 test. In the Provena/94197A1-9-2-2-2-5 population, only one QTL was detected, on chromosome 13A, in the CDL 2011 test. The 13A QTL from the Provena/94197A1-9-2-2-2-5 population was validated in the CDC Boyer/94197A1-9-2-2-2-5 population in the CDL 2010 and 2011 tests. Comparative analysis of the significant marker sequences with the rice genome database revealed 15 candidate genes for disease resistance on chromosomes 4 and 6 of rice. These genes could be potential targets for cloning from the two resistant parents.
Asunto(s)
Avena/genética , Basidiomycota/fisiología , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/inmunología , Sitios de Carácter Cuantitativo/genética , Avena/inmunología , Avena/microbiología , Mapeo Cromosómico , Ligamiento Genético , Marcadores Genéticos/genética , Genotipo , Louisiana , Fenotipo , Enfermedades de las Plantas/microbiología , Polimorfismo de Nucleótido Simple , Homología de SecuenciaRESUMEN
A trade-off between a pathogen's ability to infect many hosts and its reproductive capacity on each host genotype is predicted to limit the evolution of an expanded host range, yet few empirical results provide evidence for the magnitude of such trade-offs. Here, we test the hypothesis for a trade-off between the number of host genotypes that a fungal pathogen can infect (host genotype range) and its reproductive capacity on susceptible plant hosts. We used strains of the oat crown rust fungus that carried widely varying numbers of virulence (avr) alleles known to determine host genotype range. We quantified total spore production and the expression of four pathogen life-history stages: infection efficiency, time until reproduction, pustule size, and spore production per pustule. In support of the trade-off hypothesis, we found that virulence level, the number of avr alleles per pathogen strain, was correlated with significant delays in the onset of reproduction and with smaller pustule sizes. Modeling from our results, we conclude that trade-offs have the capacity to constrain the evolution of host genotype range in local populations. In contrast, long-term trends in virulence level suggest that the continued deployment of resistant host lines over wide regions of the United States has generated selection for increased host genotype range.
Asunto(s)
Avena/microbiología , Basidiomycota/genética , Interacciones Huésped-Patógeno/genética , Enfermedades de las Plantas/microbiología , Virulencia/genética , Adaptación Fisiológica , Avena/genética , Basidiomycota/patogenicidad , Basidiomycota/fisiología , Evolución Biológica , Aptitud Genética , Genotipo , Especificidad del Huésped , Esporas Fúngicas/genética , Esporas Fúngicas/patogenicidad , Estados UnidosRESUMEN
A physically anchored consensus map is foundational to modern genomics research; however, construction of such a map in oat (Avena sativa L., 2nâ=â6xâ=â42) has been hindered by the size and complexity of the genome, the scarcity of robust molecular markers, and the lack of aneuploid stocks. Resources developed in this study include a modified SNP discovery method for complex genomes, a diverse set of oat SNP markers, and a novel chromosome-deficient SNP anchoring strategy. These resources were applied to build the first complete, physically-anchored consensus map of hexaploid oat. Approximately 11,000 high-confidence in silico SNPs were discovered based on nine million inter-varietal sequence reads of genomic and cDNA origin. GoldenGate genotyping of 3,072 SNP assays yielded 1,311 robust markers, of which 985 were mapped in 390 recombinant-inbred lines from six bi-parental mapping populations ranging in size from 49 to 97 progeny. The consensus map included 985 SNPs and 68 previously-published markers, resolving 21 linkage groups with a total map distance of 1,838.8 cM. Consensus linkage groups were assigned to 21 chromosomes using SNP deletion analysis of chromosome-deficient monosomic hybrid stocks. Alignments with sequenced genomes of rice and Brachypodium provide evidence for extensive conservation of genomic regions, and renewed encouragement for orthology-based genomic discovery in this important hexaploid species. These results also provide a framework for high-resolution genetic analysis in oat, and a model for marker development and map construction in other species with complex genomes and limited resources.
Asunto(s)
Avena/genética , Mapeo Cromosómico/métodos , Polimorfismo de Nucleótido Simple/genética , Sintenía/genética , Genoma de Planta/genéticaRESUMEN
BACKGROUND: Genetic markers are pivotal to modern genomics research; however, discovery and genotyping of molecular markers in oat has been hindered by the size and complexity of the genome, and by a scarcity of sequence data. The purpose of this study was to generate oat expressed sequence tag (EST) information, develop a bioinformatics pipeline for SNP discovery, and establish a method for rapid, cost-effective, and straightforward genotyping of SNP markers in complex polyploid genomes such as oat. RESULTS: Based on cDNA libraries of four cultivated oat genotypes, approximately 127,000 contigs were assembled from approximately one million Roche 454 sequence reads. Contigs were filtered through a novel bioinformatics pipeline to eliminate ambiguous polymorphism caused by subgenome homology, and 96 in silico SNPs were selected from 9,448 candidate loci for validation using high-resolution melting (HRM) analysis. Of these, 52 (54%) were polymorphic between parents of the Ogle1040 × TAM O-301 (OT) mapping population, with 48 segregating as single Mendelian loci, and 44 being placed on the existing OT linkage map. Ogle and TAM amplicons from 12 primers were sequenced for SNP validation, revealing complex polymorphism in seven amplicons but general sequence conservation within SNP loci. Whole-amplicon interrogation with HRM revealed insertions, deletions, and heterozygotes in secondary oat germplasm pools, generating multiple alleles at some primer targets. To validate marker utility, 36 SNP assays were used to evaluate the genetic diversity of 34 diverse oat genotypes. Dendrogram clusters corresponded generally to known genome composition and genetic ancestry. CONCLUSIONS: The high-throughput SNP discovery pipeline presented here is a rapid and effective method for identification of polymorphic SNP alleles in the oat genome. The current-generation HRM system is a simple and highly-informative platform for SNP genotyping. These techniques provide a model for SNP discovery and genotyping in other species with complex and poorly-characterized genomes.
Asunto(s)
Avena/genética , Genoma de Planta/genética , Polimorfismo de Nucleótido Simple/genética , Análisis de Secuencia de ADN/métodos , Biología Computacional , Etiquetas de Secuencia Expresada , GenotipoRESUMEN
We report the development of 37 novel and polymorphic microsatellite markers for oat crown rust, Puccinia coronata f.sp. avenae. The allelic diversity ranged from two to 16 alleles per locus. Observed heterozygosity ranged from 0.000 to 0.971, and expected heterozygosity from 0.057 to 0.848. Thirteen of the loci were not in Hardy-Weinberg equilibrium, due to either the presence of null alleles, small sample size, or the effects of population subdivision (Wahlund's effect). All 37 primer pairs were tested with P. graminis and P. triticina showing that they are specific to P. coronata.