Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 20(7): 4760-4771, 2018 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-29379921

RESUMEN

Ionic liquids (ILs) form a multilayered structure at the solid/electrolyte interface, and the addition of solutes can alter it. For this purpose, we have investigated the influence of the silver bis(trifluoromethylsulfonyl)amide (AgTFSA) concentration in 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide ([Py1,4]TFSA) on the layering using in situ atomic force microscopy. AFM investigations revealed that the Au(111)/electrolyte interface indeed depends on the concentration of the salt where a typical " IL" multilayered structure is retained only at quite low concentrations of the silver salt (e.g. ≤200 µM). However, at 200 µM AgTFSA/[Py1,4]TFSA and above this "IL" multilayered structure is disturbed/varied. A simple double layer structure was observed at 500 µM AgTFSA in [Py1,4]TFSA. Furthermore, the widths of the innermost layers have been found to be dependent on the concentration and on the applied electrode potentials. Our AFM results show that the concentration of solutes strongly influences the structure of the electrode/electrolyte interface and can provide new insights into the electrical double layer structure of the electrode/ionic liquid interface. We also introduce a semi-continuum theory to discuss the double layer structure.

2.
Faraday Discuss ; 206: 459-473, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28936497

RESUMEN

Ionic liquids have attracted significant interest as electrolytes for the electrodeposition of metals and semiconductors, but the details of the deposition processes are not yet well understood. In this paper, we give an overview of how the addition of various precursors (TaF5, SiCl4, and GaCl3) affects the solid/IL interfacial structure. In situ Atomic Force Microscopy (AFM) and vibrational spectroscopy have been employed to study the changes of the Au(111)/IL interface and in the electrolytes, respectively. Ionic liquids with the 1-butyl-1-methylpyrrolidinium ([Py1,4]+) cation and bis(trifluoromethylsulfonyl)amide ([TFSA]-), trifluoromethylsulfonate ([TfO]-) and tris(pentafluoroethyl)trifluorophosphate ([FAP]-) as anions were chosen for this purpose. In situ AFM force-distance measurements reveal that both the anion of the IL and the solutes (TaF5 or GaCl3) influence the Electrical Double Layer (EDL) structure of the Au(111)/IL interface, which can affect the deposition process of Ta and the morphology of the Ga electrodeposits, respectively. Furthermore, the concentration of the precursor can significantly alter the Au(111)/[Py1,4][FAP]-SiCl4 interfacial structure wherein the presence of 0.25 M SiCl4 a double layer structure forms that facilitates Si deposition. This study may provide some critical insights into the structure of the electrode/IL interface for specific applications.

3.
Dalton Trans ; 46(2): 455-464, 2017 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-27957582

RESUMEN

The mixtures of 1-butylpyrrolidine and ZnCl2 result in the formation of an ionic liquid, which can be used as an electrolyte for zinc electrodeposition. The feasibility of electrodepositing Zn from these electrolytes was investigated at RT and at 60 °C. The synthesized mixtures are rather viscous. Toluene was added to the mixtures to decrease the viscosity of the ILs. Vibrational spectroscopy was employed for the characterization of the liquids. The electrochemical behaviour of the liquids was evaluated by cyclic voltammetry. The electrode/electrolyte interface of this IL was probed by Atomic Force Microscopy (AFM). The suitable range for the electrodeposition of Zn was found to be ≥28.6 mol% of ZnCl2. Zn deposition occurs mainly from the cationic species of [ZnClxLy]+ (where x = 1, y = 1-2, and L = 1-butylpyrrolidine) in these electrolytes. This is in contrary to the well investigated chlorozincate ionic liquids where the deposition of Zn occurs mainly from anionic chlorozincates. Nanoplates of Zn were obtained from these mixtures of 1-butylpyrrolidine and ZnCl2.

4.
Phys Chem Chem Phys ; 19(1): 54-58, 2016 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-27929167

RESUMEN

Ionic liquids are potential electrolytes for safe lithium-ion batteries (LIB). Recent research has probed the use of silicon as an anode material for LIB with various electrolytes. However, the nanostructure of the ionic liquid/Si interface is unknown. The present communication probes the hydrogen terminated p-Si(111) interface using atomic force microscopy (AFM) in 1-ethyl-3-methylimidazolium bis(trifluoromethlysulfonyl)amide ([EMIm]TFSA) and 1-butyl-1-methylpyrrolidinium bis(trifluoromethlysulfonyl)amide ([Py1,4]TFSA). AFM measurements reveal that the imidazolium cation adsorbs at the H-Si(111)/[EMIm]TFSA interface leading to an ordered clustered facet structure of ∼3.8 nm in size. In comparison, the Si(111)/[Py1,4]TFSA interface appeared the same as the native surface in argon. For both pure ILs, repulsive forces were measured as the tip approached the surface. On addition of LiTFSA attractive forces were measured, revealing marked changes in the interfacial structure.

5.
Angew Chem Int Ed Engl ; 55(8): 2889-93, 2016 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-26822484

RESUMEN

Metallic zinc is a promising anode material for rechargeable Zn-based batteries. However, the dendritic growth of zinc has prevented practical applications. Herein it is demonstrated that dendrite-free zinc deposits with a nanocrystalline structure can be obtained by using nickel triflate as an additive in a zinc triflate containing ionic liquid. The formation of a thin layer of Zn-Ni alloy (η- and γ-phases) on the surface and in the initial stages of deposition along with the formation of an interfacial layer on the electrode strongly affect the nucleation and growth of zinc. A well-defined and uniform nanocrystalline zinc deposit with particle sizes of about 25 nm was obtained in the presence of Ni(II) . Further, it is shown that the nanocrystalline Zn exhibits a high cycling stability even after 50 deposition/stripping cycles. This strategy of introducing an inorganic metal salt in ionic liquid electrolytes can be considered as an efficient way to obtain dendrite-free zinc.

6.
Nanoscale ; 3(1): 251-7, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21060965

RESUMEN

The electropolymerization of 3,4-ethylenedioxythiophene (EDOT) to poly(3,4-ethylenedioxythiophene) (PEDOT) was investigated in the air and water-stable ionic liquids 1-hexyl-3-methylimidazolium tris(pentafluoroethyl) trifluorophosphate [HMIm]FAP and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) amide [EMIm]TFSA. In situ scanning tunnelling microscopy (STM) results show that the electropolymerization of EDOT in the ionic liquid can be probed on the nanoscale. In contrast to present understanding, it was observed that the EDOT can be oxidised in ionic liquids well below its oxidation potential and the under potential growth of polymer was visualized by in situ STM. These results serve as the first study to confirm the under potential growth of conducting polymers in ionic liquids. Furthermore, ex situ microscopy measurements were performed. Quite a high current of 670 nA was observed on the nanoscale by conductive scanning force microscopy (CSFM).


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes/química , Oro/química , Líquidos Iónicos/química , Polímeros/química , Boratos/química , Técnicas Electroquímicas , Imidazoles/química , Microscopía de Túnel de Rastreo , Oxidación-Reducción , Polimerizacion , Propiedades de Superficie
7.
Phys Chem Chem Phys ; 12(8): 1724-32, 2010 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-20145836

RESUMEN

In this discussion paper we discuss our recent results on the electrodeposition of materials and in situ STM/AFM measurements which demonstrate that ionic liquids should not be regarded as neutral solvents which all have similar properties. In particular, we focus on differences in interfacial structure (solvation layers) on metal electrodes as a function of ionic liquid species. Recent theoretical and experimental results show that conventional double layers do not form on metal electrodes in ionic liquid systems. Rather, a multilayer architecture is present, with the number of layers determined by the ionic liquid species and the properties of the surface; up to seven discrete interfacial solvent layers are present on electrode surfaces, consequently there is no simple electrochemical double layer. Both the electrodeposition of aluminium and of tantalum are strongly influenced by ionic liquids: in 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide, [Py(1,4)]TFSA, aluminium is obtained as a nanomaterial, whereas in 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide, [EMIm]TFSA, a microcrystalline material is made. Tantalum can be deposited from [Py(1,4)]TFSA, whereas from [EMIm]TFSA only non-stoichiometric tantalum fluorides TaF(x) are obtained. It is likely that solvation layers influence these reactions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...