Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38328211

RESUMEN

Lewy body dementia (LBD), a class of disorders comprising Parkinson's disease dementia (PDD) and dementia with Lewy bodies (DLB), features substantial clinical and pathological overlap with Alzheimer's disease (AD). The identification of biomarkers unique to LBD pathophysiology could meaningfully advance its diagnosis, monitoring, and treatment. Using quantitative mass spectrometry (MS), we measured over 9,000 proteins across 138 dorsolateral prefrontal cortex (DLPFC) tissues from a University of Pennsylvania autopsy collection comprising control, Parkinson's disease (PD), PDD, and DLB diagnoses. We then analyzed co-expression network protein alterations in those with LBD, validated these disease signatures in two independent LBD datasets, and compared these findings to those observed in network analyses of AD cases. The LBD network revealed numerous groups or "modules" of co-expressed proteins significantly altered in PDD and DLB, representing synaptic, metabolic, and inflammatory pathophysiology. A comparison of validated LBD signatures to those of AD identified distinct differences between the two diseases. Notably, synuclein-associated presynaptic modules were elevated in LBD but decreased in AD relative to controls. We also found that glial-associated matrisome signatures consistently elevated in AD were more variably altered in LBD, ultimately stratifying those LBD cases with low versus high burdens of concurrent beta-amyloid deposition. In conclusion, unbiased network proteomic analysis revealed diverse pathophysiological changes in the LBD frontal cortex distinct from alterations in AD. These results highlight the LBD brain network proteome as a promising source of biomarkers that could enhance clinical recognition and management.

2.
Acta Neuropathol ; 147(1): 29, 2024 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-38308693

RESUMEN

The aggregation, mislocalization, and phosphorylation of TDP-43 are pathologic hallmarks of several neurodegenerative diseases and provide a defining criterion for the neuropathologic diagnosis of Limbic-predominant Age-related TDP-43 Encephalopathy (LATE). LATE neuropathologic changes (LATE-NC) are often comorbid with other neurodegenerative pathologies including Alzheimer's disease neuropathologic changes (ADNC). We examined whether TDP-43 regulated cryptic exons accumulate in the hippocampus of neuropathologically confirmed LATE-NC cases. We found that several cryptic RNAs are robustly expressed in LATE-NC cases with or without comorbid ADNC and correlate with pTDP-43 abundance; however, the accumulation of cryptic RNAs is more robust in LATE-NC with comorbid ADNC. Additionally, cryptic RNAs can robustly distinguish LATE-NC from healthy controls and AD cases. These findings expand our current understanding and provide novel potential biomarkers for LATE pathogenesis.


Asunto(s)
Enfermedad de Alzheimer , Demencia , Proteinopatías TDP-43 , Humanos , Encéfalo/patología , Proteinopatías TDP-43/patología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Envejecimiento/genética , Envejecimiento/patología , Proteínas de Unión al ADN/metabolismo , Exones
3.
Sci Transl Med ; 15(712): eadg4122, 2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37672565

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disease with heterogenous pathophysiological changes that develop years before the onset of clinical symptoms. These preclinical changes have generated considerable interest in identifying markers for the pathophysiological mechanisms linked to AD and AD-related disorders (ADRD). On the basis of our prior work integrating cerebrospinal fluid (CSF) and brain proteome networks, we developed a reliable and high-throughput mass spectrometry-selected reaction monitoring assay that targets 48 key proteins altered in CSF. To test the diagnostic utility of these proteins and compare them with existing AD biomarkers, CSF collected at baseline visits was assayed from 706 participants recruited from the Alzheimer's Disease Neuroimaging Initiative. We found that the targeted CSF panel of 48 proteins (CSF 48 panel) performed at least as well as existing AD CSF biomarkers (Aß42, tTau, and pTau181) for predicting clinical diagnosis, FDG PET, hippocampal volume, and measures of cognitive and dementia severity. In addition, for each of those outcomes, the CSF 48 panel plus the existing AD CSF biomarkers significantly improved diagnostic performance. Furthermore, the CSF 48 panel plus existing AD CSF biomarkers significantly improved predictions for changes in FDG PET, hippocampal volume, and measures of cognitive decline and dementia severity compared with either measure alone. A potential reason for these improvements is that the CSF 48 panel reflects a range of altered biology observed in AD/ADRD. In conclusion, we show that the CSF 48 panel complements existing AD CSF biomarkers to improve diagnosis and predict future cognitive decline and dementia severity.


Asunto(s)
Enfermedad de Alzheimer , Proteínas del Líquido Cefalorraquídeo , Enfermedad de Alzheimer/líquido cefalorraquídeo , Enfermedad de Alzheimer/diagnóstico , Humanos , Pronóstico , Biomarcadores/líquido cefalorraquídeo , Masculino , Femenino , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Determinación de Punto Final , Ensayos Analíticos de Alto Rendimiento , Proteínas del Líquido Cefalorraquídeo/análisis , Tomografía de Emisión de Positrones , Hipocampo/diagnóstico por imagen , Hipocampo/patología , Tamaño de los Órganos
4.
Neurobiol Dis ; 186: 106286, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37689213

RESUMEN

Cognitive impairment in the elderly features complex molecular pathophysiology extending beyond the hallmark pathologies of traditional disease classification. Molecular subtyping using large-scale -omic strategies can help resolve this biological heterogeneity. Using quantitative mass spectrometry, we measured ∼8000 proteins across >600 dorsolateral prefrontal cortex tissues with clinical diagnoses of no cognitive impairment (NCI), mild cognitive impairment (MCI), and Alzheimer's disease (AD) dementia. Unbiased classification of MCI and AD cases based on individual proteomic profiles resolved three classes with expression differences across numerous cell types and biological ontologies. Two classes displayed molecular signatures atypical of AD neurodegeneration, such as elevated synaptic and decreased inflammatory markers. In one class, these atypical proteomic features were associated with clinical and pathological hallmarks of cognitive resilience. We were able to replicate these classes and their clinicopathological phenotypes across two additional tissue cohorts. These results promise to better define the molecular heterogeneity of cognitive impairment and meaningfully impact its diagnostic and therapeutic precision.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Anciano , Humanos , Proteoma , Proteómica , Encéfalo
5.
Nat Med ; 29(8): 1979-1988, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37550416

RESUMEN

Alzheimer's disease (AD) pathology develops many years before the onset of cognitive symptoms. Two pathological processes-aggregation of the amyloid-ß (Aß) peptide into plaques and the microtubule protein tau into neurofibrillary tangles (NFTs)-are hallmarks of the disease. However, other pathological brain processes are thought to be key disease mediators of Aß plaque and NFT pathology. How these additional pathologies evolve over the course of the disease is currently unknown. Here we show that proteomic measurements in autosomal dominant AD cerebrospinal fluid (CSF) linked to brain protein coexpression can be used to characterize the evolution of AD pathology over a timescale spanning six decades. SMOC1 and SPON1 proteins associated with Aß plaques were elevated in AD CSF nearly 30 years before the onset of symptoms, followed by changes in synaptic proteins, metabolic proteins, axonal proteins, inflammatory proteins and finally decreases in neurosecretory proteins. The proteome discriminated mutation carriers from noncarriers before symptom onset as well or better than Aß and tau measures. Our results highlight the multifaceted landscape of AD pathophysiology and its temporal evolution. Such knowledge will be critical for developing precision therapeutic interventions and biomarkers for AD beyond those associated with Aß and tau.


Asunto(s)
Enfermedad de Alzheimer , Proteómica , Humanos , Enfermedad de Alzheimer/líquido cefalorraquídeo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/fisiopatología , Biomarcadores/metabolismo , Masculino , Femenino , Adulto , Persona de Mediana Edad , Mutación , Edad de Inicio
6.
Sci Data ; 10(1): 261, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37160957

RESUMEN

Alzheimer's disease (AD) is the most common form of dementia, with cerebrospinal fluid (CSF) ß-amyloid (Aß), total Tau, and phosphorylated Tau (pTau) providing the most sensitive and specific biomarkers for diagnosis. However, these diagnostic biomarkers do not reflect the complex changes in AD brain beyond amyloid (A) and Tau (T) pathologies. Here, we report a selected reaction monitoring mass spectrometry (SRM-MS) method with isotopically labeled standards for relative protein quantification in CSF. Biomarker positive (AT+) and negative (AT-) CSF pools were used as quality controls (QCs) to assess assay precision. We detected 62 peptides (51 proteins) with an average coefficient of variation (CV) of ~13% across 30 QCs and 133 controls (cognitively normal, AT-), 127 asymptomatic (cognitively normal, AT+) and 130 symptomatic AD (cognitively impaired, AT+). Proteins that could distinguish AT+ from AT- individuals included SMOC1, GDA, 14-3-3 proteins, and those involved in glycolysis. Proteins that could distinguish cognitive impairment were mainly neuronal proteins (VGF, NPTX2, NPTXR, and SCG2). This demonstrates the utility of SRM-MS to quantify CSF protein biomarkers across stages of AD.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/diagnóstico , Bioensayo , Biomarcadores , Proteínas del Líquido Cefalorraquídeo , Espectrometría de Masas
7.
Nat Neurosci ; 25(2): 213-225, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35115731

RESUMEN

The biological processes that are disrupted in the Alzheimer's disease (AD) brain remain incompletely understood. In this study, we analyzed the proteomes of more than 1,000 brain tissues to reveal new AD-related protein co-expression modules that were highly preserved across cohorts and brain regions. Nearly half of the protein co-expression modules, including modules significantly altered in AD, were not observed in RNA networks from the same cohorts and brain regions, highlighting the proteopathic nature of AD. Two such AD-associated modules unique to the proteomic network included a module related to MAPK signaling and metabolism and a module related to the matrisome. The matrisome module was influenced by the APOE ε4 allele but was not related to the rate of cognitive decline after adjustment for neuropathology. By contrast, the MAPK/metabolism module was strongly associated with the rate of cognitive decline. Disease-associated modules unique to the proteome are sources of promising therapeutic targets and biomarkers for AD.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Disfunción Cognitiva/patología , Humanos , Proteoma , Proteómica , ARN/metabolismo
8.
Phys Chem Chem Phys ; 21(4): 1841-1851, 2019 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-30629058

RESUMEN

Regulation of gene-expression by specific targeting of protein-nucleic acid interactions has been a long-standing goal in medicinal chemistry. Transcription factors are considered "undruggable" because they lack binding sites well suited for binding small-molecules. In order to overcome this obstacle, we are interested in designing small molecules that bind to the corresponding promoter sequences and either prevent or modulate transcription factor association via an allosteric mechanism. To achieve this, we must design small molecules that are both sequence-specific and able to target G/C base pair sites. A thorough understanding of the relationship between binding affinity and the structural aspects of the small molecule-DNA complex would greatly aid in rational design of such compounds. Here we present a comprehensive analysis of sequence-specific DNA association of a synthetic minor groove binder using long timescale molecular dynamics. We show how binding selectivity arises from a combination of structural factors. Our results provide a framework for the rational design and optimization of synthetic small molecules in order to improve site-specific targeting of DNA for therapeutic uses in the design of selective DNA binders targeting transcription regulation.


Asunto(s)
ADN , Benzamidinas/química , Benzamidinas/metabolismo , Bencimidazoles/química , Bencimidazoles/metabolismo , Sitios de Unión , ADN/química , ADN/metabolismo , Sustancias Intercalantes/química , Sustancias Intercalantes/metabolismo , Simulación de Dinámica Molecular , Conformación de Ácido Nucleico , Bibliotecas de Moléculas Pequeñas
9.
Nucleic Acids Res ; 45(3): 1297-1306, 2017 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-28180310

RESUMEN

Specific targeting of protein­nucleic acid interactions is an area of current interest, for example, in the regulation of gene-expression. Most transcription factor proteins bind in the DNA major groove; however, we are interested in an approach using small molecules to target the minor groove to control expression by an allosteric mechanism. In an effort to broaden sequence recognition of DNA-targeted-small-molecules to include both A·T and G·C base pairs, we recently discovered that the heterocyclic diamidine, DB2277, forms a strong monomer complex with a DNA sequence containing 5΄-AAAGTTT-3΄. Competition mass spectrometry and surface plasmon resonance identified new monomer complexes, as well as unexpected binding of two DB2277 with certain sequences. Inherent microstructural differences within the experimental DNAs were identified through computational analyses to understand the molecular basis for recognition. These findings emphasize the critical nature of the DNA minor groove microstructure for sequence-specific recognition and offer new avenues to design synthetic small molecules for effective regulation of gene-expression.


Asunto(s)
ADN/química , ADN/metabolismo , Emparejamiento Base , Secuencia de Bases , Sitios de Unión , ADN/genética , Genes Sintéticos , Simulación de Dinámica Molecular , Conformación de Ácido Nucleico , Espectrometría de Masa por Ionización de Electrospray , Resonancia por Plasmón de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...