Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Bioorg Med Chem ; 104: 117699, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38608634

RESUMEN

Molecular glues are small molecules that stabilize protein-protein interactions, enabling new molecular pharmacologies, such as targeted protein degradation. They offer advantages over proteolysis targeting chimeras (PROTACs), which present challenges associated with the size and properties of heterobifunctional constructions, but glues lack the rational design principles analogous to PROTACs. One notable exception is the ability to alter the structure of Cereblon (CRBN)-based molecular glues and redirect their activity toward new neo-substrate proteins. We took a focused approach toward modifying the CRBN ligand, 5'-amino lenalidomide, to alter its neo-substrate specificity using high-throughput chemical diversification by parallelized sulfur(VI)-fluoride exchange (SuFEx) transformations. We synthesized over 3,000 analogs of 5'-amino lenalidomide using this approach and screened the crude products using a phenotypic screen for cell viability, identifying dozens of analogs with differentiated activity. We characterized four compounds that degrade G-to-S phase transition 1 (GSPT1) protein, providing a proof-of-concept model for SuFEx-based discovery of CRBN molecular glues.


Asunto(s)
Ubiquitina-Proteína Ligasas , Ubiquitina-Proteína Ligasas/metabolismo , Proteolisis , Lenalidomida
2.
bioRxiv ; 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38464067

RESUMEN

Chemical proteomics enables the global assessment of small molecule-protein interactions in native biological systems and has emerged as a versatile approach for ligand discovery. The range of small molecules explored by chemical proteomics has, however, been limited. Here, we describe a diversity-oriented synthesis (DOS)-inspired library of stereochemically-defined compounds bearing diazirine and alkyne units for UV light-induced covalent modification and click chemistry enrichment of interacting proteins, respectively. We find that these 'photo-stereoprobes' interact in a stereoselective manner with hundreds of proteins from various structural and functional classes in human cells and demonstrate that these interactions can form the basis for high-throughput screening-compatible nanoBRET assays. Integrated phenotypic analysis and chemical proteomics identified photo-stereoprobes that modulate autophagy by engaging the mitochondrial serine protease CLPP. Our findings show the utility of photo-stereoprobes for expanding the ligandable proteome, furnishing target engagement assays, and discovering and characterizing bioactive small molecules by cell-based screening.

3.
ACS Med Chem Lett ; 14(12): 1785-1790, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38116437

RESUMEN

The 90 kilo-Dalton heat shock protein (Hsp90) is a molecular chaperone that facilitates the maturation of nascent polypeptides into their biologically active conformation. Because many of the >400 known client protein substrates are implicated in the development/progression of cancer, it is hypothesized that Hsp90 inhibition will simultaneously shut down numerous oncogenic pathways. Unfortunately, most of the small molecule Hsp90 inhibitors that have undergone clinical evaluation thus far have failed due to various toxicities. Therefore, the disruption of Hsp90 protein-protein interactions with cochaperones and/or client substrates has been proposed as an alternative way to achieve Hsp90 inhibition without such adverse events. The hexadepsipeptide Enniatin A (EnnA) has recently been reported to be one such inhibitor that also manifests immunogenic activity. Herein, we report preliminary structure-activity relationship (SAR) studies to determine the structural features that confer this unprecedented activity for an Hsp90 inhibitor. Our studies find that EnnA's branching moieties are necessary for its activity, but some structural modifications are tolerated.

4.
J Med Chem ; 65(8): 6273-6286, 2022 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-35417155

RESUMEN

The muscarinic acetylcholine receptor (mAChR) subtype 5 (M5) represents a novel potential target for the treatment of multiple addictive disorders, including opioid use disorder. Through chemical optimization of several functional high-throughput screening hits, VU6019650 (27b) was identified as a novel M5 orthosteric antagonist with high potency (human M5 IC50 = 36 nM), M5 subtype selectivity (>100-fold selectivity against human M1-4) and favorable physicochemical properties for systemic dosing in preclinical addiction models. In acute brain slice electrophysiology studies, 27b blocked the nonselective muscarinic agonist oxotremorine-M-induced increases in neuronal firing rates of midbrain dopamine neurons in the ventral tegmental area, a part of the mesolimbic dopaminergic reward circuitry. Moreover, 27b also inhibited oxycodone self-administration in male Sprague-Dawley rats within a dose range that did not impair general motor output.


Asunto(s)
Trastornos Relacionados con Opioides , Receptor Muscarínico M5 , Animales , Neuronas Dopaminérgicas , Masculino , Ratas , Ratas Sprague-Dawley , Receptor Muscarínico M1 , Receptores Muscarínicos
5.
Bioorg Med Chem Lett ; 56: 128479, 2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34838649

RESUMEN

In this manuscript, we report a series of chiral 6-azaspiro[2.5]octanes and related spirocycles as highly potent and selective antagonists of the muscarinic acetylcholine receptor subtype 4 (mAChR4). Chiral separation and subsequent X-ray crystallographic analysis of early generation analogs revealed the R enantiomer to possess excellent human and rat M4 potency, and further structure-activity relationship (SAR) studies on this chiral scaffold led to the discovery of VU6015241 (compound 19). Compound 19 is characterized by high M4 potency and selectivity across multiple species, excellent aqueous solubility, and moderate brain exposure in rodents after intraperitoneal administration.


Asunto(s)
Antagonistas Muscarínicos/farmacología , Receptor Muscarínico M4/antagonistas & inhibidores , Relación Dosis-Respuesta a Droga , Humanos , Estructura Molecular , Antagonistas Muscarínicos/síntesis química , Antagonistas Muscarínicos/química , Receptor Muscarínico M4/metabolismo , Relación Estructura-Actividad
6.
ACS Med Chem Lett ; 12(8): 1342-1349, 2021 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-34413964

RESUMEN

Herein, we report the SAR leading to the discovery of VU6028418, a potent M4 mAChR antagonist with high subtype-selectivity and attractive DMPK properties in vitro and in vivo across multiple species. VU6028418 was subsequently evaluated as a preclinical candidate for the treatment of dystonia and other movement disorders. During the characterization of VU6028418, a novel use of deuterium incorporation as a means to modulate CYP inhibition was also discovered.

7.
Curr Cancer Drug Targets ; 20(4): 253-270, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31793427

RESUMEN

The 90-kDa heat shock protein (Hsp90) is a molecular chaperone that ensures cellular proteostasis by maintaining the folding, stabilization, activation, and degradation of over 400 client proteins. Hsp90 is not only critical for routine protein maintenance in healthy cells, but also during states of cellular stress, such as cancer and neurodegenerative diseases. Due to its ability to affect phosphorylation of numerous client proteins, inhibition of Hsp90 has been an attractive anticancer approach since the early 1990's, when researchers identified a druggable target on the amino terminus of Hsp90 for a variety of cancers. Since then, 17 Hsp90 inhibitors that target the chaperone's Nterminal domain, have entered clinical trials. None, however, have been approved thus far by the FDA as a cancer monotherapy. In these trials, a major limitation observed with Hsp90 inhibition at the N-terminal domain was dose-limiting toxicities and relatively poor pharmacokinetic profiles. Despite this, preclinical and clinical research continues to show that Hsp90 inhibitors effectively target cancer cell death and decrease tumor progression supporting the rationale for the development of novel Hsp90 inhibitors. Here, we present an in-depth overview of the Hsp90 inhibitors used in clinical trials. Finally, we present current shifts in the field related to targeting the carboxy-terminal domain of Hsp90 as well as to the development of isoform-selective inhibitors as a means to bypass the pitfalls of current Hsp90 inhibitors and improve clinical trial outcomes.


Asunto(s)
Antineoplásicos/farmacología , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Neoplasias/tratamiento farmacológico , Animales , Antineoplásicos/uso terapéutico , Ensayos Clínicos como Asunto , Humanos , Terapia Molecular Dirigida , Neoplasias/metabolismo , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA