Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Molecules ; 28(13)2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37446864

RESUMEN

This review uses the National Cancer Institute (NCI) COMPARE program to establish an extensive list of heterocyclic iminoquinones and quinones with similarities in differential growth inhibition patterns across the 60-cell line panel of the NCI Developmental Therapeutics Program (DTP). Many natural products and synthetic analogues are revealed as potential NAD(P)H:quinone oxidoreductase 1 (NQO1) substrates, through correlations to dipyridoimidazo[5,4-f]benzimidazoleiminoquinone (DPIQ), and as potential thioredoxin reductase (TrxR) inhibitors, through correlations to benzo[1,2,4]triazin-7-ones and pleurotin. The strong correlation to NQO1 infers the enzyme has a major influence on the amount of the active compound with benzo[e]perimidines, phenoxazinones, benz[f]pyrido[1,2-a]indole-6,11-quinones, seriniquinones, kalasinamide, indolequinones, and furano[2,3-b]naphthoquinones, hypothesised as prodrugs. Compounds with very strong correlations to known TrxR inhibitors had inverse correlations to the expression of both reductase enzymes, NQO1 and TrxR, including naphtho[2,3-b][1,4]oxazepane-6,11-diones, benzo[a]carbazole-1,4-diones, pyranonaphthoquinones (including kalafungin, nanaomycin A, and analogues of griseusin A), and discorhabdin C. Quinoline-5,8-dione scaffolds based on streptonigrin and lavendamycin can correlate to either reductase. Inhibitors of TrxR are not necessarily (imino)quinones, e.g., parthenolides, while oxidising moieties are essential for correlations to NQO1, as with the mitosenes. Herein, an overview of synthetic methods and biological activity of each family of heterocyclic imino(quinone) is provided.


Asunto(s)
Antineoplásicos , Indolquinonas , Neoplasias , Estados Unidos , National Cancer Institute (U.S.) , Quinonas/química , Oxidorreductasas , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/química
3.
Nat Commun ; 14(1): 3513, 2023 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-37316487

RESUMEN

Excessive inflammation-associated coagulation is a feature of infectious diseases, occurring in such conditions as bacterial sepsis and COVID-19. It can lead to disseminated intravascular coagulation, one of the leading causes of mortality worldwide. Recently, type I interferon (IFN) signaling has been shown to be required for tissue factor (TF; gene name F3) release from macrophages, a critical initiator of coagulation, providing an important mechanistic link between innate immunity and coagulation. The mechanism of release involves type I IFN-induced caspase-11 which promotes macrophage pyroptosis. Here we find that F3 is a type I IFN-stimulated gene. Furthermore, F3 induction by lipopolysaccharide (LPS) is inhibited by the anti-inflammatory agents dimethyl fumarate (DMF) and 4-octyl itaconate (4-OI). Mechanistically, inhibition of F3 by DMF and 4-OI involves suppression of Ifnb1 expression. Additionally, they block type I IFN- and caspase-11-mediated macrophage pyroptosis, and subsequent TF release. Thereby, DMF and 4-OI inhibit TF-dependent thrombin generation. In vivo, DMF and 4-OI suppress TF-dependent thrombin generation, pulmonary thromboinflammation, and lethality induced by LPS, E. coli, and S. aureus, with 4-OI additionally attenuating inflammation-associated coagulation in a model of SARS-CoV-2 infection. Our results identify the clinically approved drug DMF and the pre-clinical tool compound 4-OI as anticoagulants that inhibit TF-mediated coagulopathy via inhibition of the macrophage type I IFN-TF axis.


Asunto(s)
COVID-19 , Interferón Tipo I , Trombosis , Humanos , Anticoagulantes , Tromboplastina , Dimetilfumarato/farmacología , Dimetilfumarato/uso terapéutico , Escherichia coli , Inflamación , Lipopolisacáridos , Staphylococcus aureus , Trombina , SARS-CoV-2 , Macrófagos , Caspasas
4.
Cell Rep ; 40(6): 111167, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35947948

RESUMEN

Many bacterial pathogens antagonize host defense responses by translocating effector proteins into cells. It remains an open question how those pathogens not encoding effectors counteract anti-bacterial immunity. Here, we show that Klebsiella pneumoniae exploits the evolutionary conserved innate protein SARM1 to regulate negatively MyD88- and TRIF-governed inflammation, and the activation of the MAP kinases ERK and JNK. SARM1 is required for Klebsiella induction of interleukin-10 (IL-10) by fine-tuning the p38-type I interferon (IFN) axis. SARM1 inhibits the activation of Klebsiella-induced absent in melanoma 2 inflammasome to limit IL-1ß production, suppressing further inflammation. Klebsiella exploits type I IFNs to induce SARM1 in a capsule and lipopolysaccharide O-polysaccharide-dependent manner via the TLR4-TRAM-TRIF-IRF3-IFNAR1 pathway. Absence of SARM1 reduces the intracellular survival of K. pneumoniae in macrophages, whereas sarm1-deficient mice control the infection. Altogether, our results illustrate an anti-immunology strategy deployed by a human pathogen. SARM1 inhibition will show a beneficial effect to treat Klebsiella infections.


Asunto(s)
Infecciones por Klebsiella , Klebsiella pneumoniae , Proteínas Adaptadoras del Transporte Vesicular , Animales , Proteínas del Dominio Armadillo/genética , Proteínas del Citoesqueleto , Humanos , Inflamación , Ratones , Transducción de Señal
5.
Front Neurosci ; 16: 852114, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35431772

RESUMEN

SARM1 (sterile alpha and armadillo motif-containing protein) is a highly conserved Toll/IL-1 Receptor (TIR) adaptor with important roles in mediating immune responses. Studies in the brain have shown that SARM1 plays a role in induction of neuronal axon degeneration in response to a variety of injuries. We recently demonstrated that SARM1 is pro-degenerative in a genetic model of inherited retinopathy. This current study aimed to characterise the effect of SARM1 deletion in an alternative model of retinal degeneration (RD) in which the retinal pigment epithelium (RPE) fragments following administration of oxidising agent, sodium iodate (NaIO3), leading to subsequent photoreceptor cell death. Following administration of NaIO3, we observed no apparent difference in rate of loss of RPE integrity in SARM1 deficient mice compared to WT counterparts. However, despite no differences in RPE degeneration, photoreceptor cell number and retinal thickness were increased in Sarm1-/- mice compared to WT counterparts. This apparent protection of the photoreceptors in SARM1 deficient mice is supported by an observed decrease in pro-apoptotic caspase-3 in the photoreceptor layer of Sarm1-/- mice compared to WT. Together these data indicate a pro-degenerative role for SARM1 in the photoreceptors, but not in the RPE, in an oxidative stress induced model of retinal degeneration consistent with its known degenerative role in neurons in a range of neurodegenerative settings.

6.
Int J Mol Sci ; 23(3)2022 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-35163535

RESUMEN

The challenge of developing gene therapies for genetic forms of blindness is heightened by the heterogeneity of these conditions. However, mechanistic commonalities indicate key pathways that may be targeted in a gene-independent approach. Mitochondrial dysfunction and axon degeneration are common features of many neurodegenerative conditions including retinal degenerations. Here we explore the neuroprotective effect afforded by the absence of sterile alpha and Toll/interleukin-1 receptor motif-containing 1 (SARM1), a prodegenerative NADase, in a rotenone-induced mouse model of retinal ganglion cell loss and visual dysfunction. Sarm1 knockout mice retain visual function after rotenone insult, displaying preservation of photopic negative response following rotenone treatment in addition to significantly higher optokinetic response measurements than wild type mice following rotenone. Protection of spatial vision is sustained over time in both sexes and is accompanied by increased RGC survival and additionally preservation of axonal density in optic nerves of Sarm1-/- mice insulted with rotenone. Primary fibroblasts extracted from Sarm1-/- mice demonstrate an increased oxygen consumption rate relative to those from wild type mice, with significantly higher basal, maximal and spare respiratory capacity. Collectively, our data indicate that Sarm1 ablation increases mitochondrial bioenergetics and confers histological and functional protection in vivo in the mouse retina against mitochondrial dysfunction, a hallmark of many neurodegenerative conditions including a variety of ocular disorders.


Asunto(s)
Proteínas del Dominio Armadillo/genética , Proteínas del Citoesqueleto/genética , Fibroblastos/metabolismo , Degeneración Retiniana/prevención & control , Células Ganglionares de la Retina/fisiología , Rotenona/efectos adversos , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Metabolismo Energético , Femenino , Fibroblastos/citología , Técnicas de Inactivación de Genes , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Consumo de Oxígeno , Cultivo Primario de Células , Degeneración Retiniana/inducido químicamente , Degeneración Retiniana/genética
7.
J Biol Chem ; 297(6): 101417, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34793837

RESUMEN

SARM1 is a toll/interleukin-1 receptor -domain containing protein, with roles proposed in both innate immunity and neuronal degeneration. Murine SARM1 has been reported to regulate the transcription of chemokines in both neurons and macrophages; however, the extent to which SARM1 contributes to transcription regulation remains to be fully understood. Here, we identify differential gene expression in bone-marrow-derived macrophages (BMDMs) from C57BL/6 congenic 129 ES cell-derived Sarm1-/- mice compared with wild type (WT). However, we found that passenger genes, which are derived from the 129 donor strain of mice that flank the Sarm1 locus, confound interpretation of the results, since many of the identified differentially regulated genes come from this region. To re-examine the transcriptional role of SARM1 in the absence of passenger genes, here we generated three Sarm1-/- mice using CRISPR/Cas9. Treatment of neurons from these mice with vincristine, a chemotherapeutic drug causing axonal degeneration, confirmed SARM1's function in that process; however, these mice also showed that lack of SARM1 has no impact on transcription of genes previously shown to be affected such as chemokines. To gain further insight into SARM1 function, we generated an epitope-tagged SARM1 mouse. In these mice, we observed high SARM1 protein expression in the brain and brainstem and lower but detectable levels in macrophages. Overall, the generation of these SARM1 knockout and epitope-tagged mice has clarified that SARM1 is expressed in mouse macrophages yet has no general role in macrophage transcriptional regulation and has provided important new models to further explore SARM1 function.


Asunto(s)
Proteínas del Dominio Armadillo , Sistemas CRISPR-Cas , Proteínas del Citoesqueleto , Epítopos , Regulación de la Expresión Génica , Macrófagos/metabolismo , Transcripción Genética , Animales , Proteínas del Dominio Armadillo/biosíntesis , Proteínas del Dominio Armadillo/genética , Proteínas del Citoesqueleto/biosíntesis , Proteínas del Citoesqueleto/genética , Epítopos/genética , Epítopos/metabolismo , Ratones , Ratones Noqueados , Neuronas/metabolismo , Vincristina/metabolismo
8.
Sci Signal ; 14(709): eabe3800, 2021 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-34784249

RESUMEN

The formation of Ca2+ microdomains during T cell activation is initiated by the production of nicotinic acid adenine dinucleotide phosphate (NAADP) from its reduced form NAADPH. The reverse reaction­NAADP to NAADPH­is catalyzed by glucose 6-phosphate dehydrogenase (G6PD). Here, we identified NADPH oxidases NOX and DUOX as NAADP-forming enzymes that convert NAADPH to NAADP under physiological conditions in vitro. T cells express NOX1, NOX2, and, to a minor extent, DUOX1 and DUOX2. Local and global Ca2+ signaling were decreased in mouse T cells with double knockout of Duoxa1 and Duoxa2 but not with knockout of Nox1 or Nox2. Ca2+ microdomains in the first 15 s upon T cell activation were significantly decreased in Duox2−/− but not in Duox1−/− T cells, whereas both DUOX1 and DUOX2 were required for global Ca2+ signaling between 4 and 12 min after stimulation. Our findings suggest that a DUOX2- and G6PD-catalyzed redox cycle rapidly produces and degrades NAADP through NAADPH as an inactive intermediate.


Asunto(s)
Señalización del Calcio , Oxidasas Duales , Activación de Linfocitos , NADPH Oxidasas , NADP/biosíntesis , Linfocitos T , Animales , Oxidasas Duales/genética , Células HEK293 , Humanos , Células Jurkat , Ratones Noqueados , NADP/análogos & derivados , NADPH Oxidasas/genética , Linfocitos T/enzimología
9.
Front Oncol ; 11: 822500, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35198436

RESUMEN

DNA lesions arising from both exogenous and endogenous sources occur frequently in DNA. During DNA replication, the presence of unrepaired DNA damage in the template can arrest replication fork progression, leading to fork collapse, double-strand break formation, and to genome instability. To facilitate completion of replication and prevent the generation of strand breaks, DNA damage tolerance (DDT) pathways play a key role in allowing replication to proceed in the presence of lesions in the template. The two main DDT pathways are translesion synthesis (TLS), which involves the recruitment of specialized TLS polymerases to the site of replication arrest to bypass lesions, and homology-directed damage tolerance, which includes the template switching and fork reversal pathways. With some exceptions, lesion bypass by TLS polymerases is a source of mutagenesis, potentially contributing to the development of cancer. The capacity of TLS polymerases to bypass replication-blocking lesions induced by anti-cancer drugs such as cisplatin can also contribute to tumor chemoresistance. On the other hand, during homology-directed DDT the nascent sister strand is transiently utilised as a template for replication, allowing for error-free lesion bypass. Given the role of DNA damage tolerance pathways in replication, mutagenesis and chemoresistance, a more complete understanding of these pathways can provide avenues for therapeutic exploitation. A number of small molecule inhibitors of TLS polymerase activity have been identified that show synergy with conventional chemotherapeutic agents in killing cancer cells. In this review, we will summarize the major DDT pathways, explore the relationship between damage tolerance and carcinogenesis, and discuss the potential of targeting TLS polymerases as a therapeutic approach.

10.
Biochem Pharmacol ; 183: 114316, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33152343

RESUMEN

Pattern recognition receptors (PRRs) and inflammasomes are a key part of the anti-viral innate immune system as they detect conserved viral pathogen-associated molecular patterns (PAMPs). A successful host response to viral infections critically depend on the initial activation of PRRs by viruses, mainly by viral DNA and RNA. The signalling pathways activated by PRRs leads to the expression of pro-inflammatory cytokines, to recruit immune cells, and type I and type III interferons which leads to the induction of interferon stimulated genes (ISG), powerful virus restriction factors that establish the "antiviral state". Inflammasomes contribute to anti-viral responses through the maturation of interleukin (IL)-1 and IL-18 and through triggering pyroptotic cell death. The activity of the innate immune system along with the adaptive immune response normally leads to successful virus elimination, although disproportionate innate responses contribute to viral pathology. In this review we will discuss recent insights into the influence of PRR activation and inflammasomes on viral infections and what this means for the mammalian host. We will also comment on how specific PRRs and inflammasomes may be relevant to how SARS-CoV-2, the virus responsible for the current COVID-19 pandemic, interacts with host innate immunity.


Asunto(s)
Inmunidad Innata/inmunología , Inflamasomas/inmunología , SARS-CoV-2/inmunología , Virosis/inmunología , Animales , Humanos , Inflamasomas/metabolismo , Receptores de Reconocimiento de Patrones/inmunología , Receptores de Reconocimiento de Patrones/metabolismo , SARS-CoV-2/metabolismo , Virosis/diagnóstico , Virosis/metabolismo
11.
Life Sci Alliance ; 3(5)2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32312889

RESUMEN

Retinal degeneration is the leading cause of incurable blindness worldwide and is characterised by progressive loss of light-sensing photoreceptors in the neural retina. SARM1 is known for its role in axonal degeneration, but a role for SARM1 in photoreceptor cell degeneration has not been reported. SARM1 is known to mediate neuronal cell degeneration through depletion of essential metabolite NAD and induction of energy crisis. Here, we demonstrate that SARM1 is expressed in photoreceptors, and using retinal tissue explant, we confirm that activation of SARM1 causes destruction of NAD pools in the photoreceptor layer. Through generation of rho -/- sarm1 -/- double knockout mice, we demonstrate that genetic deletion of SARM1 promotes both rod and cone photoreceptor cell survival in the rhodopsin knockout (rho -/- ) mouse model of photoreceptor degeneration. Finally, we demonstrate that SARM1 deficiency preserves cone visual function in the surviving photoreceptors when assayed by electroretinography. Overall, our data indicate that endogenous SARM1 has the capacity to consume NAD in photoreceptor cells and identifies a previously unappreciated role for SARM1-dependent cell death in photoreceptor cell degeneration.


Asunto(s)
Proteínas del Dominio Armadillo/metabolismo , Proteínas del Citoesqueleto/metabolismo , Células Fotorreceptoras/metabolismo , Degeneración Retiniana/genética , Animales , Proteínas del Dominio Armadillo/genética , Proteínas del Dominio Armadillo/fisiología , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/fisiología , Modelos Animales de Enfermedad , Electrorretinografía , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , NAD/metabolismo , Células Fotorreceptoras/fisiología , Retina/metabolismo , Células Fotorreceptoras Retinianas Conos/metabolismo , Degeneración Retiniana/metabolismo , Células Fotorreceptoras Retinianas Bastones/metabolismo , Retinitis Pigmentosa/metabolismo , Rodopsina/metabolismo , Visión Ocular
12.
Immunity ; 50(6): 1412-1424.e6, 2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31076360

RESUMEN

Assembly of inflammasomes after infection or injury leads to the release of interleukin-1ß (IL-1ß) and to pyroptosis. After inflammasome activation, cells either pyroptose or enter a hyperactivated state defined by IL-1ß secretion without cell death, but what controls these different outcomes is unknown. Here, we show that removal of the Toll-IL-1R protein SARM from macrophages uncouples inflammasome-dependent cytokine release and pyroptosis, whereby cells displayed increased IL-1ß production but reduced pyroptosis. Correspondingly, increasing SARM in cells caused less IL-1ß release and more pyroptosis. SARM suppressed IL-1ß by directly restraining the NLRP3 inflammasome and, hence, caspase-1 activation. Consistent with a role for SARM in pyroptosis, Sarm1-/- mice were protected from lipopolysaccharide (LPS)-stimulated sepsis. Pyroptosis-inducing, but not hyperactivating, NLRP3 stimulants caused SARM-dependent mitochondrial depolarization. Thus, SARM-dependent mitochondrial depolarization distinguishes NLRP3 activators that cause pyroptosis from those that do not, and SARM modulation represents a cell-intrinsic mechanism to regulate cell fate after inflammasome activation.


Asunto(s)
Proteínas del Dominio Armadillo/metabolismo , Citocinas/metabolismo , Proteínas del Citoesqueleto/metabolismo , Inflamasomas/metabolismo , Animales , Proteínas del Dominio Armadillo/genética , Biomarcadores , Supervivencia Celular , Proteínas del Citoesqueleto/genética , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Ratones Noqueados , Mitocondrias/genética , Mitocondrias/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Unión Proteica , Piroptosis , Transducción de Señal
13.
Biochem Pharmacol ; 161: 52-62, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30633870

RESUMEN

SARM is the fifth and most conserved member of the Toll/Il-1 Receptor (TIR) adaptor family. However, unlike the other TIR adaptors, MyD88, Mal, TRIF and TRAM, SARM does not participate in transducing signals downstream of TLRs. By contrast SARM inhibits TLR signalling by interacting with the adaptors TRIF and MyD88. In addition, SARM also has positive roles in innate immunity by activating specific transcriptional programs following immune challenge. SARM has a pivotal role in activating different forms of cell death following cellular stress and viral infection. Many of these functions of mammalian SARM are also reflected in SARM orthologues in lower organisms such as C. elegans and Drosophila. SARM expression is particularly enriched in neurons of the CNS and SARM has a critical role in neuronal death and in axon degeneration. Recent fascinating molecular insights have been revealed as to the molecular mechanism of SARM mediated axon degeneration. SARM has been shown to deplete NAD+ by possessing intrinsic NADase activity in the TIR domain of the protein. This activity can be activated experimentally by forced dimerization of the TIR domain. It is thought that this activity of SARM is normally switched off by the axo-protective activities of NMNAT2 which maintain low levels of the NAD+ precursor NMN. Therefore, there is now great excitement in the field of SARM research as targeting this enzymatic activity of SARM may lead to the development of new therapies for neurodegenerative diseases such as multiple sclerosis and motor neuron disease.


Asunto(s)
Proteínas del Dominio Armadillo/inmunología , Proteínas del Dominio Armadillo/metabolismo , Muerte Celular/fisiología , Proteínas del Citoesqueleto/inmunología , Proteínas del Citoesqueleto/metabolismo , Inmunidad Innata/fisiología , Animales , Humanos
14.
Bioorg Chem ; 84: 418-433, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30554081

RESUMEN

1,5-Dideoxy-1,5-imino-l-fucitol (1-deoxyfuconojirimycin, DFJ) is an iminosugar that inhibits fucosidases. Herein, N-alkyl DFJs have been synthesised and tested against the α-fucosidases of T. maritima (bacterial origin) and B. taurus (bovine origin). The N-alkyl derivatives were inactive against the bacterial fucosidase, while inhibiting the bovine enzyme. Docking of inhibitors to homology models, generated for the bovine and human fucosidases, was carried out. N-Decyl-DFJ was toxic to cancer cell lines and was more potent than the other N-alkyl DFJs studied.


Asunto(s)
Inhibidores Enzimáticos/síntesis química , Alcoholes del Azúcar/química , alfa-L-Fucosidasa/antagonistas & inhibidores , 1-Desoxinojirimicina/análogos & derivados , 1-Desoxinojirimicina/química , 1-Desoxinojirimicina/metabolismo , Bacterias/enzimología , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/metabolismo , Sitios de Unión , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Humanos , Inmunoglobulina G/metabolismo , Inmunoglobulina G/farmacología , Concentración 50 Inhibidora , Melfalán/síntesis química , Melfalán/metabolismo , Melfalán/farmacología , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad , Alcoholes del Azúcar/metabolismo , alfa-L-Fucosidasa/metabolismo
15.
J Biol Chem ; 293(39): 14989-15001, 2018 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-30111593

RESUMEN

Host pattern recognition receptors (PRRs) such as Toll-like receptors (TLRs) detect viruses and other pathogens, inducing production of cytokines that cause inflammation and mobilize cells to control infection. Vaccinia virus (VACV) encodes proteins that antagonize these host innate immune responses, and elucidating the mechanisms of action of these viral proteins helped shed light on PRR signaling mechanisms. The VACV virulence factor E3 is one of the most intensely studied VACV proteins and has multiple effects on host cells, many of which cannot be explained by the currently known cellular targets of E3. Here, we report that E3 expression in human monocytes alters TLR2- and TLR8-dependent cytokine induction, and particularly inhibits interleukin (IL)-6. Using MS, we identified DExD/H-box helicase 9 (DHX9) as an E3 target. Although DHX9 has previously been implicated as a PRR for sensing nucleic acid in dendritic cells, we found no role for DHX9 as a nucleic acid-sensing PRR in monocytes. Rather, DHX9 suppression in these cells phenocopied the effects of E3 expression on TLR2- and TLR8-dependent cytokine induction, in that DHX9 was required for all TLR8-dependent cytokines measured, and for TLR2-dependent IL-6. Furthermore, DHX9 also had a cell- and stimulus-independent role in IL-6 promoter induction. DHX9 enhanced NF-κB-dependent IL-6 promoter activation, which was directly antagonized by E3. These results indicate new roles for DHX9 in regulating cytokines in innate immunity and reveal that VACV E3 disrupts innate immune responses by targeting of DHX9.


Asunto(s)
ARN Helicasas DEAD-box/genética , Interacciones Huésped-Patógeno/genética , Inmunidad Innata/genética , Proteínas de Neoplasias/genética , Proteínas de Unión al ARN/genética , Receptor Toll-Like 2/genética , Proteínas Virales/genética , Regulación Viral de la Expresión Génica , Interacciones Huésped-Patógeno/inmunología , Humanos , Interleucina-6/genética , Monocitos/virología , Regiones Promotoras Genéticas , Receptores de Reconocimiento de Patrones/genética , Receptor Toll-Like 8/genética , Vaccinia/genética , Vaccinia/virología , Virus Vaccinia/genética , Virus Vaccinia/patogenicidad
16.
Org Lett ; 20(10): 3025-3029, 2018 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-29697986

RESUMEN

Isosorbide was functionalized with furoxan for the first time to give adducts that release nitric oxide up to 7.5 times faster than the commercial vasodilator, isosorbide-5-mononitrate (Is5N). The synthesis was facilitated by MeMgCl-mediated selective acetylation of isosorbide or selective deacetylation of isosorbide-2,5-diacetate, which was rationalized in terms of a more stable 5-alkoxide magnesium salt using DFT. Isosorbide-furoxans are safer to handle than Is5N due to greater thermal stability.

17.
Molecules ; 23(3)2018 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-29510488

RESUMEN

Cell viability studies for benzo[1,2,4]triazin-7-ones and 1,2,4-benzotriazinyl (Blatter-type) radical precursors are described with comparisons made with 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO). All of the stable free radicals were several orders of magnitude less cytotoxic than the benzo[1,2,4]triazin-7-ones. The synthesis and evaluation of two new pyrid-2-yl benzo[1,2,4]triazin-7-ones are described, where altering the 1,3-substitution from phenyl to pyrid-2-yl increased cytotoxicity against most cancer cell lines, as indicated using National Cancer Institute (NCI) one-dose testing. COMPARE analysis of five-dose testing data from the NCI showed very strong correlations to the naturally occurring anti-cancer compound pleurotin. COMPARE is program, which analyzes similarities in cytotoxicity data of compounds, and enables quantitative expression as Pearson correlation coefficients. Compounds were also evaluated using the independent MTT assay, which was compared with SRB assay data generated at the NCI.


Asunto(s)
Antineoplásicos/farmacología , Derivados del Benceno/farmacología , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Triazinas/farmacología , Antineoplásicos/síntesis química , Derivados del Benceno/síntesis química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Radicales Libres , Células HT29 , Compuestos Heterocíclicos de 4 o más Anillos/síntesis química , Humanos , Células MCF-7 , Relación Estructura-Actividad , Triazinas/síntesis química
18.
Front Immunol ; 8: 1494, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29209310

RESUMEN

There has been a move away from vaccines composed of whole or inactivated antigens toward subunit-based vaccines, which although safe, provide less immunological protection. As a result, the use of adjuvants to enhance and direct adaptive immune responses has become the focus of much targeted bovine vaccine research. However, the mechanisms by which adjuvants work to enhance immunological protection in many cases remains unclear, although this knowledge is critical to the rational design of effective next generation vaccines. This study aimed to investigate the mechanisms by which alum, a commonly used adjuvant in bovine vaccines, enhances IL-1ß secretion in bovine peripheral blood mononuclear cells (PBMCs). Unlike the case with human PBMCs, alum promoted IL-1ß secretion in a subset of bovine PBMCs without priming with a toll-like receptor agonist. This suggests that PBMCs from some cattle are primed to produce this potent inflammatory cytokine and western blotting confirmed the presence of preexisting pro-IL-1ß in PBMCs from a subset of 8-month-old cattle. To address the mechanism underlying alum-induced IL-1ß secretion, specific inhibitors identified that alum mediates lysosomal disruption which subsequently activates the assembly of an NLRP3, ASC, caspase-1, and potentially caspase-8 containing complex. These components form an inflammasome, which mediates alum-induced IL-1ß secretion in bovine PBMCs. Given the demonstrated role of the NLRP3 inflammasome in regulating adaptive immunity in murine systems, these results will inform further targeted research into the potential of inflammasome activation for rational vaccine design in cattle.

19.
Bioorg Med Chem ; 24(16): 3565-70, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-27290691

RESUMEN

The thioredoxin (Trx)-thioredoxin reductase (TrxR) system plays a key role in maintaining the cellular redox balance with Trx being over-expressed in a number of cancers. Inhibition of TrxR is an important strategy for anti-cancer drug discovery. The natural product pleurotin is a well-known irreversible inhibitor of TrxR. The cytotoxicity data for benzo[1,2,4]triazin-7-ones showed very strong correlation (Pearson correlation coefficients ∼0.8) to pleurotin using National Cancer Institute COMPARE analysis. A new 3-CF3 substituted benzo[1,2,4]triazin-7-one gave submicromolar inhibition of TrxR, although the parent compound 1,3-diphenylbenzo[1,2,4]triazin-7-one was more cytotoxic against cancer cell lines. Benzo[1,2,4]triazin-7-ones exhibited different types of reversible inhibition of TrxR, and cyclic voltammetry showed characteristic quasi-reversible redox processes. Cell viability studies indicated strong dependence of cytotoxicity on substitution at the 6-position of the 1,3-diphenylbenzo[1,2,4]triazin-7-one ring.


Asunto(s)
Antineoplásicos/farmacología , Compuestos Heterocíclicos de 4 o más Anillos/antagonistas & inhibidores , Reductasa de Tiorredoxina-Disulfuro/antagonistas & inhibidores , Triazinas/farmacología , Antineoplásicos/química , Línea Celular Transformada , Descubrimiento de Drogas , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Triazinas/química
20.
J Immunol ; 192(10): 4821-32, 2014 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-24711619

RESUMEN

The four Toll/IL-1R domain-containing adaptor proteins MyD88, MAL, TRIF, and TRAM are well established as essential mediators of TLR signaling and gene induction following microbial detection. In contrast, the function of the fifth, most evolutionarily conserved Toll/IL-1R adaptor, sterile α and HEAT/Armadillo motif-containing protein (SARM), has remained more elusive. Recent studies of Sarm(-/-) mice have highlighted a role for SARM in stress-induced neuronal cell death and immune responses in the CNS. However, whether SARM has a role in immune responses in peripheral myeloid immune cells is less clear. Thus, we characterized TLR-induced cytokine responses in SARM-deficient murine macrophages and discovered a requirement for SARM in CCL5 production, whereas gene induction of TNF, IL-1ß, CCL2, and CXCL10 were SARM-independent. SARM was not required for TLR-induced activation of MAPKs or of transcription factors implicated in CCL5 induction, namely NF-κB and IFN regulatory factors, nor for Ccl5 mRNA stability or splicing. However, SARM was critical for the recruitment of transcription factors and of RNA polymerase II to the Ccl5 promoter. Strikingly, the requirement of SARM for CCL5 induction was not restricted to TLR pathways, as it was also apparent in cytosolic RNA and DNA responses. Thus, this study identifies a new role for SARM in CCL5 expression in macrophages.


Asunto(s)
Proteínas del Dominio Armadillo/inmunología , Quimiocina CCL5/inmunología , Proteínas del Citoesqueleto/inmunología , Factores Reguladores del Interferón/inmunología , Macrófagos Peritoneales/inmunología , FN-kappa B/inmunología , Regiones Promotoras Genéticas/inmunología , ARN Polimerasa II/inmunología , Animales , Proteínas del Dominio Armadillo/genética , Proteínas del Dominio Armadillo/metabolismo , Quimiocina CCL2/genética , Quimiocina CCL2/inmunología , Quimiocina CCL2/metabolismo , Quimiocina CCL5/biosíntesis , Quimiocina CCL5/genética , Quimiocina CXCL10/genética , Quimiocina CXCL10/inmunología , Quimiocina CXCL10/metabolismo , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Regulación de la Expresión Génica/fisiología , Factores Reguladores del Interferón/genética , Factores Reguladores del Interferón/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/inmunología , Interleucina-1beta/metabolismo , Macrófagos Peritoneales/citología , Macrófagos Peritoneales/metabolismo , Ratones , Ratones Noqueados , FN-kappa B/genética , FN-kappa B/metabolismo , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/inmunología , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...