Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nutr Diabetes ; 14(1): 64, 2024 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-39147772

RESUMEN

Analyzing changes in gene expression within specific brain regions of individuals with Type 2 Diabetes (T2DM) who do not exhibit significant cognitive deficits can yield valuable insights into the mechanisms underlying the progression towards a more severe phenotype. In this study, transcriptomic analysis of the cortex and hippocampus of mice with long-term T2DM revealed alterations in the expression of 28 genes in the cerebral cortex and 15 genes in the hippocampus. Among these genes, six displayed consistent changes in both the cortex and hippocampus: Interferon regulatory factor 7 (Irf7), Hypoxia-inducible factor 3 alpha (Hif-3α), period circadian clock 2 (Per2), xanthine dehydrogenase (Xdh), and Transforming growth factor ß-stimulated clone 22/TSC22 (Tsc22d3) were upregulated, while Claudin-5 (Cldn5) was downregulated. Confirmation of these changes was achieved through RT-qPCR. At the protein level, CLDN5 and IRF7 exhibited similar alterations, with CLDN5 being downregulated and IRF7 being upregulated. In addition, the hippocampus and cortex of the T2DM mice showed decreased levels of IκBα, implying the involvement of NF-κB pathways as well. Taken together, these results suggest that the weakening of the blood-brain barrier and an abnormal inflammatory response via the Interferon 1 and NF-κB pathways underlie cognitive impairment in individuals with long-standing T2DM.


Asunto(s)
Corteza Cerebral , Claudina-5 , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Hipocampo , Factor 7 Regulador del Interferón , Animales , Corteza Cerebral/metabolismo , Hipocampo/metabolismo , Claudina-5/metabolismo , Claudina-5/genética , Ratones , Diabetes Mellitus Experimental/metabolismo , Factor 7 Regulador del Interferón/metabolismo , Factor 7 Regulador del Interferón/genética , Masculino , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/genética , Ratones Endogámicos C57BL
2.
Nat Neurosci ; 27(5): 952-963, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38499854

RESUMEN

Innate behaviors meet multiple needs adaptively and in a serial order, suggesting the existence of a hitherto elusive brain dynamics that brings together representations of upcoming behaviors during their selection. Here we show that during behavioral transitions, possible upcoming behaviors are encoded by specific signatures of neuronal populations in the lateral hypothalamus (LH) that are active near beta oscillation peaks. Optogenetic recruitment of intrahypothalamic inhibition at this phase eliminates behavioral transitions. We show that transitions are elicited by beta-rhythmic inputs from the prefrontal cortex that spontaneously synchronize with LH 'transition cells' encoding multiple behaviors. Downstream of the LH, dopamine neurons increase firing during beta oscillations and also encode behavioral transitions. Thus, a hypothalamic transition state signals alternative future behaviors, encodes the one most likely to be selected and enables rapid coordination with cognitive and reward-processing circuitries, commanding adaptive social contact and eating behaviors.


Asunto(s)
Ritmo beta , Vías Nerviosas , Corteza Prefrontal , Animales , Corteza Prefrontal/fisiología , Vías Nerviosas/fisiología , Masculino , Ritmo beta/fisiología , Ratones , Optogenética , Conducta Animal/fisiología , Área Hipotalámica Lateral/fisiología , Recompensa , Neuronas Dopaminérgicas/fisiología , Hipotálamo/fisiología
3.
Life Sci Alliance ; 6(6)2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37059474

RESUMEN

In this work, we tested the hypothesis that the development of dementia in individuals with type 2 diabetes (T2DM) requires a genetic background of predisposition to neurodegenerative disease. As a proof of concept, we induced T2DM in middle-aged hAPP NL/F mice, a preclinical model of Alzheimer's disease. We show that T2DM produces more severe behavioral, electrophysiological, and structural alterations in these mice compared with wild-type mice. Mechanistically, the deficits are not paralleled by higher levels of toxic forms of Aß or by neuroinflammation but by a reduction in γ-secretase activity, lower levels of synaptic proteins, and by increased phosphorylation of tau. RNA-seq analysis of the cerebral cortex of hAPP NL/F and wild-type mice suggests that the former could be more susceptible to T2DM because of defects in trans-membrane transport. The results of this work, on the one hand, confirm the importance of the genetic background in the severity of the cognitive disorders in individuals with T2DM and, on the other hand, suggest, among the involved mechanisms, the inhibition of γ-secretase activity.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Enfermedades Neurodegenerativas , Ratones , Animales , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Secretasas de la Proteína Precursora del Amiloide/genética , Ratones Transgénicos , Disfunción Cognitiva/genética , Disfunción Cognitiva/metabolismo , Susceptibilidad a Enfermedades
4.
Nat Commun ; 12(1): 4801, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34376649

RESUMEN

Hippocampal pyramidal cells encode an animal's location by single action potentials and complex spike bursts. These elementary signals are believed to play distinct roles in memory consolidation. The timing of single spikes and bursts is determined by intrinsic excitability and theta oscillations (5-10 Hz). Yet contributions of these dynamics to place fields remain elusive due to the lack of methods for specific modification of burst discharge. In mice lacking Kcnq3-containing M-type K+ channels, we find that pyramidal cell bursts are less coordinated by the theta rhythm than in controls during spatial navigation, but not alert immobility. Less modulated bursts are followed by an intact post-burst pause of single spike firing, resulting in a temporal discoordination of network oscillatory and intrinsic excitability. Place fields of single spikes in one- and two-dimensional environments are smaller in the mutant. Optogenetic manipulations of upstream signals reveal that neither medial septal GABA-ergic nor cholinergic inputs alone, but rather their joint activity, is required for entrainment of bursts. Our results suggest that altered representations by bursts and single spikes may contribute to deficits underlying cognitive disabilities associated with KCNQ3-mutations in humans.


Asunto(s)
Potenciales de Acción/fisiología , Canal de Potasio KCNQ3/fisiología , Células Piramidales/fisiología , Ritmo Teta/fisiología , Animales , Hipocampo/citología , Humanos , Canal de Potasio KCNQ3/genética , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Optogenética/métodos
5.
Nature ; 542(7640): 232-236, 2017 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-28146472

RESUMEN

Both humans and animals seek primary rewards in the environment, even when such rewards do not correspond to current physiological needs. An example of this is a dissociation between food-seeking behaviour and metabolic needs, a notoriously difficult-to-treat symptom of eating disorders. Feeding relies on distinct cell groups in the hypothalamus, the activity of which also changes in anticipation of feeding onset. The hypothalamus receives strong descending inputs from the lateral septum, which is connected, in turn, with cortical networks, but cognitive regulation of feeding-related behaviours is not yet understood. Cortical cognitive processing involves gamma oscillations, which support memory, attention, cognitive flexibility and sensory responses. These functions contribute crucially to feeding behaviour by unknown neural mechanisms. Here we show that coordinated gamma (30-90 Hz) oscillations in the lateral hypothalamus and upstream brain regions organize food-seeking behaviour in mice. Gamma-rhythmic input to the lateral hypothalamus from somatostatin-positive lateral septum cells evokes food approach without affecting food intake. Inhibitory inputs from the lateral septum enable separate signalling by lateral hypothalamus neurons according to their feeding-related activity, making them fire at distinct phases of the gamma oscillation. Upstream, medial prefrontal cortical projections provide gamma-rhythmic inputs to the lateral septum; these inputs are causally associated with improved performance in a food-rewarded learning task. Overall, our work identifies a top-down pathway that uses gamma synchronization to guide the activity of subcortical networks and to regulate feeding behaviour by dynamic reorganization of functional cell groups in the hypothalamus.


Asunto(s)
Conducta Alimentaria/fisiología , Ritmo Gamma/fisiología , Hipotálamo/fisiología , Animales , Ingestión de Alimentos/fisiología , Ingestión de Alimentos/psicología , Metabolismo Energético/fisiología , Conducta Alimentaria/psicología , Hipotálamo/citología , Aprendizaje , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/fisiología , Recompensa , Somatostatina/metabolismo
6.
Rev Neurol ; 55(7): 413-20, 2012 Oct 01.
Artículo en Español | MEDLINE | ID: mdl-23011860

RESUMEN

Sleep homeostasis occurs during prolonged wakefulness. Drowsiness and sleep pressure are its behavioral manifestations and, when sleep is allowed, there is a sleep rebound of sufficient duration and intensity to compensate for the previous deprivation. Adenosine is one of the molecules involved in sleep homeostasic regulation. Caffeine and theophylline, stimulants widely consumed by the humans, are antagonists. It is an endogenous factor, resulting from ATP metabolism in neurons and glia. Adenosine accumulates in the extracellular space, where it can exert regulatory actions on the sleep-wakefulness cycle circuits. Adenosine acts through the purinergic receptors A1 and A2. This paper reviews: 1) the metabolic pathways of cerebral adenosine, and the mechanisms of its release by neurons and glia to the extracellular space; 2) the actions of adenosine and its antagonists in regions of the central nervous system related to wakefulness, non-REM sleep, and REM sleep, and 3) the synaptic mechanisms involved in these actions.


Asunto(s)
Adenosina/fisiología , Homeostasis/fisiología , Sueño/fisiología , Adenosina Trifosfato/metabolismo , Animales , Astrocitos/metabolismo , Química Encefálica , Estimulantes del Sistema Nervioso Central/farmacología , Humanos , Hipnóticos y Sedantes/farmacología , Hipotálamo/fisiología , Péptidos y Proteínas de Señalización Intracelular/fisiología , Modelos Biológicos , Neuropéptidos/fisiología , Neurotransmisores/fisiología , Orexinas , Prosencéfalo/fisiología , Receptores de Neurotransmisores/fisiología , Receptores Purinérgicos P1/efectos de los fármacos , Receptores Purinérgicos P1/fisiología , Receptores Purinérgicos P2/efectos de los fármacos , Receptores Purinérgicos P2/fisiología , Transducción de Señal/efectos de los fármacos , Vigilia/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...