Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros












Intervalo de año de publicación
1.
Int J Mol Sci ; 25(17)2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39273188

RESUMEN

Escherichia coli is a frequent pathogen isolated from bloodstream infections. This study aimed to characterize the genetic features of EC092, an E. coli strain isolated from bacteremia that harbors enteroaggregative E. coli (EAEC) genetic markers, indicating its hybrid pathogenic potential. Whole-genome sequencing showed that EC092 belongs to phylogroup B1, ST278, and serotype O165:H4. Genes encoding virulence factors such as fimbriae, toxins, iron-uptake systems, autotransporter proteins (Pet, Pic, Sat, and SepA), and secretion systems were detected, as well as EAEC virulence genes (aggR, aatA, aaiC, and aap). EC092 was found to be closely related to the other EAEC prototype strains and highly similar in terms of virulence to three EAEC strains isolated from diarrhea. The genomic neighborhood of pet, pic, sat, sepA, and the EAEC virulence genes of EC092 and its three genetically related fecal EAEC strains showed an identical genomic organization and nucleotide sequences. Also, EC092 produced and secreted Pet, Pic, Sat, and SepA in the culture supernatant and resisted the bactericidal activity of normal human serum. Our results demonstrate that the strain EC092, isolated from bacteremia, is a hybrid pathogenic extraintestinal E. coli (ExPEC)/EAEC with virulence features that could mediate both extraintestinal and intestinal infections.


Asunto(s)
Bacteriemia , Infecciones por Escherichia coli , Escherichia coli , Genoma Bacteriano , Factores de Virulencia , Humanos , Bacteriemia/microbiología , Escherichia coli/genética , Escherichia coli/patogenicidad , Factores de Virulencia/genética , Infecciones por Escherichia coli/microbiología , Secuenciación Completa del Genoma , Virulencia/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Filogenia , Genómica/métodos
2.
Artículo en Inglés | MEDLINE | ID: mdl-39194141

RESUMEN

Waste pickers constitute a marginalized demographic engaged in the collection of refuse, facing considerable occupational hazards that heighten their susceptibility to contract infectious diseases. Moreover, waste pickers contend with societal stigmatization and encounter barriers to accessing healthcare services. To explore the viral profile of waste pickers potentially linked to their occupational environment, we conducted a metagenomic analysis on 120 plasma specimens sampled from individuals employed at the Cidade Estrutural dumpsite in Brasilia city, Brazil. In total, 60 blood donors served as a comparative control group. Specimens were pooled and subjected to Illumina NextSeq 2000 sequencing. Viral abundance among waste pickers revealed the presence of significant pathogens, including HIV, HCV, and Chikungunya, which were not detected in the control group. Additionally, elevated levels of anelloviruses and Human pegivirus-1 were noted, with a comparable incidence in the control group. These findings underscore the utility of metagenomics in identifying clinically relevant viral agents within underserved populations. The implications of this study extend to informing public health policies aimed at surveilling infectious diseases among individuals facing socioeconomic disparities and limited access to healthcare resources.


Asunto(s)
Metagenómica , Humanos , Brasil , Masculino , Adulto , Femenino , Virus/genética , Virus/clasificación , Virus/aislamiento & purificación , Exposición Profesional , Estudios de Casos y Controles , Persona de Mediana Edad , Eliminación de Residuos
3.
Microorganisms ; 12(7)2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39065176

RESUMEN

Public health faces daily challenges due to increasing reports of pathogenic microorganisms with new antimicrobial resistance. Klebsiella michiganensis, an emerging pathogen, poses difficulty in its identification using conventional techniques. This study presents the first documented case of NDM-1-producing K. michiganensis in Brazil, identified as the new ST418. Initially, the isolate from a tracheal secretion was misidentified as K. oxytoca. However, accurate identification was achieved through ANI analyses. Whole-genome sequencing was conducted to characterize the genetic context of the resistance genes, to identify virulence factors, and to construct a phylogenetic tree. The blaNDM-1 gene was found to be harbored on an IncFIB plasmid approximately 112 kb in length, which was transferable in conjugation assays. The detection of carbapenem resistance genes in this species highlights the importance of public health vigilance, as it may serve as a reservoir and disseminator of significant resistance genes.

4.
Braz J Microbiol ; 55(2): 1297-1304, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38396221

RESUMEN

Although it has been hypothesized that the acquisition of plasmids-especially those bearing virulence factors and antimicrobial resistance genes-increases the energetic burden and reduces the fitness of a bacterium in general, some results have challenged this view, showing little or no effect on fitness after plasmid acquisition, which may lead to change in the view that there are evolutionary barriers for a wide spread of such plasmids among bacteria. Here, to evaluate the fitness impact of plasmid-encoded antibiotic resistance and virulence genes, plasmids from O26:H11, O111:H8, and O118:H16 Shiga toxin-producing Escherichia coli (STEC) human and bovine isolates were transferred to the non-virulent E. coli HS and K-12 MG1655 strains. Sequencing and PCR were used to characterize plasmids, and to identify the presence of antimicrobial resistance and/or virulence genes. The fitness impact of plasmids encoding virulence and antimicrobial resistance upon bacterial hosts was determined by pairwise growth competition. Plasmid profile analysis showed that STEC strains carried one or more high and low molecular weight plasmids belonging to the B/O, F, I, K, P, Q, and/or X incompatibility groups encoding virulence genes (SPATE-encoding genes) and/or antimicrobial resistance genes (aadA1, strAB, tetA, and/or tetB). Competition experiments demonstrated that the biological cost of carriage of these plasmids by the commensal E. coli strain HS or the laboratory strain E. coli K-12 MG1655 was low or non-existent, ranging from - 4.7 to 5.2% per generation. This suggests that there are few biological barriers-or, alternatively, it suggests that there are biological barriers that we were not able to measure in this competition model-against the spread of plasmid encoding virulence and resistance genes from STEC to other, less pathogenic E. coli strains. Thus, our results, in opposition to a common view, suggest that the acquisition of plasmids does not significantly affect the bacteria fitness and, therefore, the theorized plasmid burden would not be a significant barrier for plasmid spread.


Asunto(s)
Infecciones por Escherichia coli , Plásmidos , Escherichia coli Shiga-Toxigénica , Factores de Virulencia , Plásmidos/genética , Escherichia coli Shiga-Toxigénica/genética , Escherichia coli Shiga-Toxigénica/efectos de los fármacos , Animales , Bovinos , Factores de Virulencia/genética , Humanos , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/veterinaria , Virulencia/genética , Escherichia coli/genética , Escherichia coli/efectos de los fármacos , Aptitud Genética , Farmacorresistencia Bacteriana/genética , Antibacterianos/farmacología
5.
Antibiotics (Basel) ; 13(2)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38391496

RESUMEN

Until 2015, polymyxin resistance was primarily attributed to chromosomal mutations. However, with the first report of mobile colistin resistance (mcr-1) in commensal Escherichia coli from food animals in China, the landscape has changed. To evaluate the presence of polymyxin resistance in Salmonella spp., a drop screening test for colistin and polymyxin B was carried out on 1156 isolates of non-human origin (animals, food, and the environment), received in Brazil, between 2016 and 2021. Subsequently, 210 isolates with resistant results in the drop test were subjected to the gold-standard test (broth microdilution) for both colistin and polymyxin B. Whole-genome sequencing (WGS) of 102 resistant isolates was performed for a comprehensive analysis of associated genes. Surprisingly, none of the isolates resistant to colistin in the drop test harbored any of the mcr variants (mcr-1 to mcr-10). WGS identified that the most common mutations were found in pmrA (n= 22; T89S) and pmrB (n = 24; M15T, G73S, V74I, I83A, A111V). Other resistance determinants were also detected, such as the aac(6')-Iaa gene in 72 isolates, while others carried beta-lactamase genes (blaTEM-1blaCTX-M-2, blaCMY-2). Additionally, genes associated with fluoroquinolone resistance (qnrB19, qnrS1, oqxA/B) were detected in 11 isolates. Colistin and polymyxin B resistance were identified among Salmonella from non-human sources, but not associated with the mcr genes. Furthermore, the already-described mutations associated with polymyxin resistance were detected in only a small number of isolates, underscoring the need to explore and characterize unknown genes that contribute to resistance.

6.
Microbiol Immunol ; 68(1): 1-5, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37859304

RESUMEN

Over the last decade, New Delhi metallo-beta-lactamase (NDM) carbapenemase has silently spread in Brazil. In this study, we analyzed a large collection of Enterobacterales other than Klebsiella spp. received in our reference laboratory between 2013 and 2022. A total of 32 clinical isolates displaying different pulsed-field gel electrophoresis profiles, and represented by 11 species in the families Enterobacteriaceae (Citrobacter freundii, Citrobacter portucalensis, Enterobacter hormaechei, and Escherichia coli), Morganellaceae (Morganella morganii, Proteus mirabilis, Proteus vulgaris, Providencia rettgeri, Providencia stuartii, and Raoultella ornithinolytica), and Yersiniaceae (Serratia marcescens) had their whole genomes sequenced and further analyzed. Antimicrobial susceptibility was determined by disk diffusion, except for polymyxin B, assessed by broth microdilution. The blaNDM-1 allele was predominant (n = 29), but blaNDM-5 was identified in an E. coli specimen with a novel ST, and the blaNDM-7 allele was found in E. hormaechei ST45 and E. coli ST1049. Polymyxin was active against all but one Enterobacteriaceae isolate: an mcr-1-producing E. coli presenting minimal inhibitory concentration (4 mg/L). Isolates producing extended-spectrum ß-lactamases were common: cefotaximase from Munich (CTX-M)-15 (n = 10), CTX-M-2 (n = 4), and CTX-M-8 (n = 3) were detected, and the mcr-1-producing E. coli was found to co-produce both CTX-M-8 and CTX-M-55 ß-lactamases. The mcr-9 gene was found in 5/8 E. hormaechei isolates, distributed in four different sequence types, all of them presenting susceptibility to polymyxin. This study showed that NDM-producing Enterobacterales other than Klebsiella are already spread in Brazil, in diversified species, and cocarrying important resistance genes. Prompt detection and effective implementation of measures to prevent further spread are mandatory for mitigating the dissemination of NDM carbapenemase in hospital settings and preserving the already limited antimicrobial therapy options.


Asunto(s)
Infecciones por Enterobacteriaceae , Escherichia coli , Humanos , Klebsiella/genética , Brasil/epidemiología , Antibacterianos/farmacología , beta-Lactamasas/genética , Infecciones por Enterobacteriaceae/epidemiología , Genómica , Pruebas de Sensibilidad Microbiana , Polimixinas/farmacología
7.
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1569555

RESUMEN

ABSTRACT Waste pickers constitute a marginalized demographic engaged in the collection of refuse, facing considerable occupational hazards that heighten their susceptibility to contract infectious diseases. Moreover, waste pickers contend with societal stigmatization and encounter barriers to accessing healthcare services. To explore the viral profile of waste pickers potentially linked to their occupational environment, we conducted a metagenomic analysis on 120 plasma specimens sampled from individuals employed at the Cidade Estrutural dumpsite in Brasilia city, Brazil. In total, 60 blood donors served as a comparative control group. Specimens were pooled and subjected to Illumina NextSeq 2000 sequencing. Viral abundance among waste pickers revealed the presence of significant pathogens, including HIV, HCV, and Chikungunya, which were not detected in the control group. Additionally, elevated levels of anelloviruses and Human pegivirus-1 were noted, with a comparable incidence in the control group. These findings underscore the utility of metagenomics in identifying clinically relevant viral agents within underserved populations. The implications of this study extend to informing public health policies aimed at surveilling infectious diseases among individuals facing socioeconomic disparities and limited access to healthcare resources.

8.
Microorganisms ; 11(11)2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-38004755

RESUMEN

The emergence of SARS-CoV-2 and the subsequent pandemic have prompted extensive diagnostic and clinical efforts to mitigate viral spread. However, these strategies have largely overlooked the presence of other respiratory viruses. Acute respiratory diseases in pediatric patients can be caused by a diverse range of viral agents, and metagenomics represents a powerful tool for their characterization. This study aimed to investigate the viral abundance in pediatric patients with acute respiratory symptoms who tested negative for SARS-CoV-2 during the Omicron pandemic wave. To achieve this, viral metagenomics and next-generation sequencing were employed on 96 nasopharyngeal swab samples, which were organized into 12 pools, with each pool consisting of eight individual samples. Metagenomic analysis revealed that the most prevalent viruses associated with acute disease in pediatric patients were respiratory syncytial virus (detected in all pools) and enteroviruses, which are known to cause significant morbidity and mortality in children. Additionally, clinically significant viruses such as mumps orthorubulavirus, human metapneumovirus, influenza A, and a wide array of human herpesviruses (1, 3-7) were identified. These findings highlight the extensive potential of viral metagenomics in identifying viruses other than SARS-CoV-2 that contribute to acute infections in children. Consequently, this methodology should garner clinical attention in terms of differential diagnosis and the development of public policies to address such conditions in the global pediatric population.

9.
Vet Microbiol ; 283: 109792, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37269712

RESUMEN

The discovery and tracking of antimicrobial resistance genes are essential for understanding the evolution of bacterial resistance and restraining its dispersion. Mammaliicoccus sciuri (formerly Staphylococcus sciuri) is the most probable evolutionary repository of the mecA gene, that later disseminated to S. aureus. In this study, we describe the first double mecA/mecC homologue-positive non-aureus staphylococci and mammaliicocci (NASM) from the American continent, also representing the first report of mecC-positive NASM in Brazil. Two clonally related methicillin-resistant M. sciuri strains co-carrying mecA and mecC genes were isolated from the teat skin swab and milk sample collected from an ewe's left udder half. Both M. sciuri strains belonged to the sequence type (ST) 71. Besides mecA and mecC genes, the M. sciuri strains carried broad resistomes for clinically important antimicrobial agents, including ß-lactams, tetracyclines, lincosamide, streptogramin, streptomycin, and aminoglycosides. Virulome analysis showed the presence of the clumping factor B (clfB), ATP-dependent protease ClpP (ClpP) and serine-aspartate repeat proteins (sdrC and sdrE) virulence-associated genes. Phylogenomic analysis revealed that these M. sciuri strains are part of a globally disseminated branch, associated with farm and companion animals and even with food. Our findings suggest that M. sciuri is likely to emerge as a pathogen of global interest, carrying a broad repertoire of antimicrobial resistance genes with a remarkable co-presence of mecA and mecC genes. Finally, we strongly encourage to monitor M. sciuri under the One Health umbrella since this bacterial species is spreading at the human-animal-environment interface.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Enfermedades de las Ovejas , Infecciones Estafilocócicas , Femenino , Ovinos , Animales , Humanos , Staphylococcus aureus/genética , Ganado , Brasil/epidemiología , Proteínas Bacterianas/genética , Antibacterianos/farmacología , Infecciones Estafilocócicas/epidemiología , Infecciones Estafilocócicas/veterinaria , Infecciones Estafilocócicas/microbiología , Pruebas de Sensibilidad Microbiana/veterinaria
10.
Mol Cell Oncol ; 10(1): 2188858, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36950183

RESUMEN

Growing evidence suggests that metavirome changes could be associated increased risk for malignant cell transformation. Considering Viruses have been proposed as factors for prostate cancer induction. The objective of this study was to examine the composition of the plasma metavirome of patients with prostate cancer. Blood samples were obtained from 49 male patients with primary prostate adenocarcinoma. Thirty blood donors were included as a control group. The obtained next-generation sequencing data were analyzed using a bioinformatic pipeline for virus metagenomics. Viral reads with higher abundance were assembled in contigs and analyzed taxonomically. Viral agents of interest were also confirmed by qPCR. Anelloviruses and the Human Pegivirus-1 (HPgV-1) were the most abundant component of plasma metavirome. Clinically important viruses like hepatitis C virus (HCV), cytomegalovirus and human adenovirus type C were also identified. In comparison, the blood donor virome was exclusively composed of torque teno virus types (TTV) types. The performed HPgV-1 and HCV phylogeny revealed that these viruses belong to commonly detected in Brazil genotypes. Our study sheds light on the plasma viral abundance in patients with prostatic cancer. The obtained viral diversity allowed us to separate the patients and controls, probably suggesting that malignant processes may influence virome composition. More complex and multiple approach investigations are necessary to examine the likely causal relationship between metavirome and its nvolvement in prostate cancer.

11.
Eur J Clin Microbiol Infect Dis ; 42(3): 255-266, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36662376

RESUMEN

Streptococcus pneumoniae causes invasive diseases of significant public health concern, such as meningitis. The culture of cerebrospinal fluid (CSF) samples, the standard technique for meningitis diagnoses, is not always positive. Consequently, meaningful information about the etiological agent is lost, which can compromise effective epidemiological surveillance and the improvement of immunization policies. This study aims to standardize a method to genotype pneumococcus in the CSF samples which could mitigate the absence of isolated strains, and also evaluate the prediction of this assay. We applied eight multiplex PCR (mPCR) assays to CSF samples paired with the Quellung reaction applied to the isolated strains. We also compared different master mix kits in the mPCR. Moreover, a retrospective study was conducted with CSF samples considered pneumococcus positive due to the presence of the lytA gene. Results showed that genotyping by the mPCR correlated 100% with the Quellung reaction, and genotyping was dependent on the master mix applied. In the retrospective study (2014-2020), 73.4% were successfully genotyped. The analyses of the receiver operating characteristic curve showed that the cycle threshold (Ct value) around 30 for the lytA gene had a 75% positive chance of successful genotyping, whereas with a Ct value > 35, the chance was 12.5%. Finally, we observed that genotype 19A was prevalent in the period (12%), information unknown until now due to the lack of isolated strains. Therefore, the mPCR of CSF samples can efficiently predict S. pneumoniae serotypes, especially in the absence of isolated strains, which can be a great tool for pneumococcal serotype surveillance.


Asunto(s)
Infecciones Neumocócicas , Streptococcus pneumoniae , Humanos , Streptococcus pneumoniae/genética , Reacción en Cadena de la Polimerasa Multiplex , Serogrupo , Estudios Retrospectivos , Serotipificación/métodos , Infecciones Neumocócicas/microbiología
12.
Antibiotics (Basel) ; 11(10)2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36290053

RESUMEN

Background: Since its first report in the country in 2013, NDM-producing Enterobacterales have been identified in all the Brazilian administrative regions. In this study, we characterized by antimicrobial susceptibility testing and by molecular typing a large collection of NDM-producing Klebsiella isolates from different hospitals in Brazil, mainly from the state of Sao Paulo, over the last decade. Methods: Bacterial isolates positive for blaNDM-genes were identified by MALDI-TOF MS and submitted to antimicrobial susceptibility testing by disk diffusion or broth microdilution (for polymyxin B). All isolates were submitted to pulsed-field gel electrophoresis, and isolates belonging to different clusters were submitted to whole genome sequencing by Illumina technology and downstream analysis. Mating out assays were performed by conjugation, plasmid sizes were determined by S1-PFGE, and plasmid content was investigated by hybrid assembly after MinIon long reads sequencing. Results: A total of 135 NDM-producing Klebsiella were identified, distributed into 107 different pulsotypes; polymyxin B was the only antimicrobial with high activity against 88.9% of the isolates. Fifty-four isolates presenting diversified pulsotypes were distributed in the species K. pneumoniae (70%), K. quasipneumoniae (20%), K. variicola (6%), K. michiganensis (a K. oxytoca Complex species, 2%), and K. aerogenes (2%); blaNDM-1 was the most frequent allele (43/54, 80%). There was a predominance of Clonal Group 258 (ST11 and ST340) encompassing 35% of K. pneumoniae isolates, but another thirty-one different sequence types (ST) were identified, including three described in this study (ST6244 and ST6245 for K. pneumoniae, and ST418 for K. michiganensis). The blaNDM-1 and blaNDM-7 were found to be located into IncF and IncX3 type transferable plasmids, respectively. Conclusions: Both clonal (mainly driven by CG258) and non-clonal expansion of NDM-producing Klebsiella have been occurring in Brazil in different species and clones, associated with different plasmids, since 2013.

13.
Viruses ; 14(9)2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-36146740

RESUMEN

Viral metagenomics is increasingly being used for the identification of emerging and re-emerging viral pathogens in clinical samples with unknown etiology. The objective of this study was to shield light on the metavirome composition in clinical samples obtained from patients with clinical history compatible with an arboviral infection, but that presented inconclusive results when tested using RT-qPCR. The inconclusive amplification results might be an indication of the presence of an emerging arboviral agent that is inefficiently amplified by conventional PCR techniques. A total of eight serum samples with inconclusive amplification results for the routinely tested arboviruses-dengue (DENV), Zika (ZIKV), and Chikungunya (CHIKV) obtained during DENV and CHIKV outbreaks registered in the state of Alagoas, Northeast Brazil between July and August 2021-were submitted to metagenomic next-generation sequencing assay using NextSeq 2000 and bioinformatic pipeline for viral discovery. The performed bioinformatic analysis revealed the presence of two arboviruses: DENV type 2 (DENV-2) and CHIKV with a high genome coverage. Further, the metavirome of those samples revealed the presence of multiple commensal viruses apparently without clinical significance. The phylogenetic analysis demonstrated that the DENV-2 genome belonged to the Asian/American genotype and clustered with other Brazilian strains. The identified CHIKV genome was taxonomically assigned as ECSA genotype, which is circulating in Brazil. Together, our results reinforce the utility of metagenomics as a valuable tool for viral identification in samples with inconclusive arboviral amplification. Viral metagenomics is one of the most potent methods for the identification of emerging arboviruses.


Asunto(s)
Fiebre Chikungunya , Virus Chikungunya , Virus del Dengue , Dengue , Infección por el Virus Zika , Virus Zika , Arbovirus/genética , Fiebre Chikungunya/diagnóstico , Fiebre Chikungunya/epidemiología , Virus Chikungunya/genética , Enfermedades Transmisibles Emergentes , Dengue/diagnóstico , Dengue/epidemiología , Virus del Dengue/genética , Humanos , Metagenómica , Filogenia , Reacción en Cadena en Tiempo Real de la Polimerasa , Virus Zika/genética
14.
Microorganisms ; 10(6)2022 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-35744689

RESUMEN

Pil-fimbriae is a type IV pili member, which is a remarkably versatile component with a wide variety of functions, including motility, attachment to different surfaces, electrical conductance, DNA acquisition, and secretion of a broad range of structurally distinct protein substrates. Despite the previous functional characterization of Pil, more studies are required to understand the regulation of Pil expression and production, since the exact mechanisms involved in these steps are still unknown. Therefore it is extremely important to have a protein with the correct secondary and tertiary structure that will enable an accurate characterization and a specific antisera generation. For this reason, the aim of this work was to generate potential tools for further investigations to comprehend the mechanisms involved in Pil regulation and its role in pathogenic E. coli infections with the obtaining of a precise native-like recombinant PilS and the corresponding antisera. The pilS gene was successfully cloned into an expression vector, and recombinant PilS (rPilS) was efficiently solubilized and purified by metal affinity chromatography. Protein characterization analyses indicated that rPilS presented native-like secondary and tertiary structures after the refolding process. The generated anti-rPilS sera efficiently recognized recombinant and native proteins from atypical enteropathogenic E. coli strains.

15.
Pharmacol Res ; 181: 106245, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35526666

RESUMEN

Multidrug-resistant bacterial infections are a threat to public health worldwide, which boosts the urgent need for pharmacological research for new drugs. Although the peptides without disulfide bridges from scorpions have shown antimicrobial action, usually their toxicity hamper their pharmacological application. Stigmurin is a non-hemolytic cationic peptide from Tityus stigmurus venom with antibacterial effect and toxicity on normal cells. In this approach, the conformational changes and stability of two Stigmurin analog peptides, named StigA8 and StigA18, were evaluated by circular dichroism, as well as the mechanism of interaction with bacterial membranes in silico. In addition, the in vitro and in vivo antibacterial activity and the action against the biofilm formed by multidrug-resistant Staphylococcus aureus were investigated. StigA8 (+4) and StigA18 (+5) revealed the ability to change their structural conformation depending on the medium composition, and high stability at different temperatures and pH conditions. Both analog peptides showed greater ability to interact with bacterial membranes in silico when compared to the native one. StigA8 and StigA18 demonstrated low hemolytic action, with non-toxic effect on G. mellonella larvae up to 120 mg/kg. StigA8 and StigA18 presented a broad spectrum of antibacterial action in vitro, especially against multidrug-resistant clinical isolates. The analog peptides (7.5 µM) also reduced the biofilm biomass of multidrug-resistant S. aureus, as well as increased the larval survival of the Galleria mellonella infected larvae. Therefore, StigA8 and StigA18 showed a beneficial potential in the treatment of bacterial infections, constituting promising bioactive components for the development of new antimicrobial agents.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Venenos de Escorpión , Animales , Antibacterianos/farmacología , Bacterias , Biopelículas , Pruebas de Sensibilidad Microbiana , Péptidos/química , Péptidos/farmacología , Venenos de Escorpión/química , Venenos de Escorpión/farmacología , Escorpiones/química
16.
Microbes Infect ; 24(5): 104972, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35358729

RESUMEN

A multi-drug resistant, CTX-M-65 producing Salmonella Infantis was identified from a patient in Brazil. Whole genome sequencing followed by hybrid assembly (short and long reads) indicated the presence of blaCTX-M-65 in a pESI-like megaplasmid in this ST32 isolate and phylogenetic analysis showed high similarity with IncFIB S. Infantis isolates from food and poultry in the USA.


Asunto(s)
Farmacorresistencia Bacteriana Múltiple , Salmonella enterica , Antibacterianos/farmacología , Brasil , Genómica , Humanos , Filogenia , Plásmidos , Salmonella enterica/efectos de los fármacos , Salmonella enterica/genética , beta-Lactamasas/genética
17.
Virulence ; 12(1): 3073-3093, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34923895

RESUMEN

Enteroaggregative Escherichia coli (EAEC) comprises an important diarrheagenic pathotype, while uropathogenic E. coli (UPEC) is the most important agent of urinary tract infection (UTI). Recently, EAEC virulence factors have been detected in E. coli strains causing UTI, showing the importance of these hybrid-pathogenic strains. Previously, we detected an E. coli strain isolated from UTI (UPEC-46) presenting characteristics of EAEC, e.g., the aggregative adherence (AA) pattern and EAEC-associated genes (aatA, aap, and pet). In this current study, we analyzed the whole genomic sequence of UPEC-46 and characterized some phenotypic traits. The AA phenotype was observed in cell lineages of urinary and intestinal origin. The production of curli, cellulose, bacteriocins, and Pet toxin was detected. Additionally, UPEC-46 was not capable of forming biofilm using different culture media and human urine. The genome sequence analysis showed that this strain belongs to serotype O166:H12, ST10, and phylogroup A, harbors the tet, aadA, and dfrA/sul resistance genes, and is phylogenetically more related to EAEC strains isolated from human feces. UPEC-46 harbors three plasmids. Plasmid p46-1 (~135 kb) carries some EAEC marker genes and those encoding the aggregate-forming pili (AFP) and its regulator (afpR). A mutation in afpA (encoding the AFP major pilin) led to the loss of pilin production and assembly, and notably, a strongly reduced adhesion to epithelial cells. In summary, the genetic background and phenotypic traits analyzed suggest that UPEC-46 is a hybrid strain (UPEC/EAEC) and highlights the importance of AFP adhesin in the adherence to colorectal and bladder cell lines.


Asunto(s)
Infecciones por Escherichia coli , Proteínas de Escherichia coli , Infecciones Urinarias , Escherichia coli Uropatógena , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Femenino , Proteínas Fimbrias/genética , Humanos , Masculino , Escherichia coli Uropatógena/genética , Escherichia coli Uropatógena/metabolismo , alfa-Fetoproteínas
18.
Toxins (Basel) ; 13(12)2021 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-34941750

RESUMEN

Hemostatic disorders are caused either by platelet-related dysfunctions, defective blood coagulation, or by a combination of both, leading to an increased susceptibility to cardiovascular diseases (CVD) and other related illnesses. The unique specificity of anticoagulants from hematophagous arthropods, such as ticks, suggests that tick saliva holds great promise for discovering new treatments for these life-threatening diseases. In this study, we combined in silico and in vitro analyses to characterize the first recombinant serpin, herein called Dromaserpin, from the sialotranscriptome of the Hyalomma dromedarii tick. Our in silico data described Dromaserpin as a secreted protein of ~43 kDa with high similarities to previously characterized inhibitory serpins. The recombinant protein (rDromaserpin) was obtained as a well-structured monomer, which was tested using global blood coagulation and platelet aggregation assays. With this approach, we confirmed rDromaserpin anticoagulant activity as it significantly delayed plasma clotting in activated partial thromboplastin time and thrombin time assays. The profiling of proteolytic activity shows its capacity to inhibit thrombin in the micromolar range (0.2 to 1 µM) and in the presence of heparin this inhibition was clearly increased. It was also able to inhibit Kallikrein, FXIa and slightly FXIIa, with no significant effect on other factors. In addition, the rDromaserpin inhibited thrombin-induced platelet aggregation. Taken together, our data suggest that rDromaserpin deserves to be further investigated as a potential candidate for developing therapeutic compounds targeting disorders related to blood clotting and/or platelet aggregation.


Asunto(s)
Coagulación Sanguínea/efectos de los fármacos , Ixodidae/metabolismo , Serpinas/química , Serpinas/farmacología , Secuencia de Aminoácidos , Animales , Anticoagulantes/química , Anticoagulantes/metabolismo , Simulación por Computador , Modelos Moleculares , Filogenia , Conformación Proteica , Serpinas/metabolismo
19.
Toxins (Basel) ; 13(11)2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34822587

RESUMEN

Snake venom metalloproteinases (SVMP) are involved in local inflammatory reactions observed after snakebites. Based on domain composition, they are classified as PI (pro-domain + proteolytic domain), PII (PI + disintegrin-like domains), or PIII (PII + cysteine-rich domains). Here, we studied the role of different SVMPs domains in inducing the expression of adhesion molecules at the microcirculation of the cremaster muscle of mice. We used Jararhagin (Jar)-a PIII SVMP with intense hemorrhagic activity, and Jar-C-a Jar devoid of the catalytic domain, with no hemorrhagic activity, both isolated from B. jararaca venom and BnP-1-a weakly hemorrhagic P1 SVMP from B. neuwiedi venom. Toxins (0.5 µg) or PBS (100 µL) were injected into the scrotum of mice, and 2, 4, or 24 h later, the protein and gene expression of CD54 and CD31 in the endothelium, and integrins (CD11a and CD11b), expressed in leukocytes were evaluated. Toxins induced significant increases in CD54, CD11a, and CD11b at the initial time and a time-related increase in CD31 expression. In conclusion, our results suggest that, despite differences in hemorrhagic activities and domain composition of the SVMPs used in this study, they behave similarly to the induction of expression of adhesion molecules that promote leukocyte recruitment.


Asunto(s)
Bothrops , Venenos de Crotálidos/toxicidad , Metaloendopeptidasas/toxicidad , Músculos Abdominales/efectos de los fármacos , Animales , Moléculas de Adhesión Celular/metabolismo , Venenos de Crotálidos/aislamiento & purificación , Regulación de la Expresión Génica/efectos de los fármacos , Leucocitos/metabolismo , Masculino , Metaloendopeptidasas/aislamiento & purificación , Ratones , Microcirculación/efectos de los fármacos , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/genética , Factores de Tiempo , Veneno de Bothrops Jararaca
20.
Microb Pathog ; 158: 105092, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34274454

RESUMEN

The use of conjugate vaccines remains an effective intervention to prevent pneumococcal diseases. In order to expand vaccine coverage, the inclusion of pneumococcal proteins as carriers is a propitious alternative that has been explored over the past few years. In this study, pneumococcal surface protein A (PspA) clade 1, family 1 (PspA1) and clade 3, family 2 (PspA3) were used as carrier proteins for pneumococcal capsular polysaccharide serotype 6B (Ps6B). Employing an improved reductive amination chemistry, 50% of Ps6B was incorporated to each protein, PspA1 and PspA3. The effect of chemical modifications in Ps6B and PspA was assessed by an antigenicity assay and circular dichroism, respectively. Fragmentation and oxidation decreased the antigenicity of Ps6B while conjugation improved antigenicity. In the same manner, introduction of adipic acid dihydrazide (ADH) reduced PspA secondary structure content, which was partially restored after conjugation. Immunization of Ps6B-PspA1 and Ps6B-PspA3 conjugates in mice induced specific IgG antibodies against the Ps6B and the protein; and anti-PspA antibodies had functional activity against two pneumococcal strains with different serotypes. These results suggest that chemical coupling between Ps6B and PspA did not affect antigenic epitopes and support the further development of PspA as a carrier protein in pneumococcal conjugate vaccines to provide broader protection.


Asunto(s)
Anticuerpos Antibacterianos , Infecciones Neumocócicas , Animales , Proteínas Bacterianas/genética , Ratones , Ratones Endogámicos BALB C , Infecciones Neumocócicas/prevención & control , Vacunas Neumococicas , Polisacáridos Bacterianos , Serogrupo , Vacunas Conjugadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...