RESUMEN
Sea lice (Lepeophtheirus salmonis) and infectious salmon anemia virus (ISAv) are two of the most important pathogens in Atlantic salmon (Salmo salar) farming and typically cause substantial economic losses to the industry. However, the immune interactions between hosts and these pathogens are still unclear, especially in the scenario of co-infection. In this study, we artificially infected Atlantic salmon with sea lice and ISAv, and investigated the gene expression patterns of Atlantic salmon head kidneys in response to both lice only and co-infection with lice and ISAv by transcriptomic analysis. The challenge experiment indicated that co-infection resulted in a cumulative mortality rate of 47.8 %, while no mortality was observed in the lice alone infection. We identified 240 differentially expressed genes (DEGs) under the lice alone infection, of which 185 were down-regulated and 55 were up-regulated, while a total of 994 DEGs were identified in the co-infection, of which 206 were down-regulated and 788 were significantly up-regulated. The pathway enrichment analysis revealed that single-infection significantly suppressed the innate immune system (e.g., the complement system), whereas co-infection induced a strong immune response, leading to the activation of immune-related signaling pathways such as Toll-like receptors and NOD-like receptors pathways, as well as significant upregulation of genes related to the activation of interferon and MH class I protein complex. Our results provide the first global transcriptomic study of gene expression in the Atlantic salmon head kidney in response to co-infection with sea lice and ISAv, and provided the baseline knowledge for understanding the immune responses during co-infection.
Asunto(s)
Coinfección , Copépodos , Enfermedades de los Peces , Isavirus , Salmo salar , Animales , Salmo salar/genética , Copépodos/fisiología , Isavirus/genética , Coinfección/veterinaria , Perfilación de la Expresión Génica/veterinaria , Transcriptoma , Inmunidad , RiñónRESUMEN
Sea lice (Lepeophtheirus salmonis) are ectoparasitic copepods that cause significant economic loss in marine salmoniculture. In commercial salmon farms, infestation with sea lice can enhance susceptibility to other significant pathogens, such as the highly contagious infectious salmon anemia virus (ISAv). In this study, transcriptomic analysis was used to evaluate the impact of four experimental functional feeds (i.e. 0.3% EPA/DHA+high-ω6, 0.3% EPA/DHA+high-ω6+immunostimulant (IS), 1% EPA/DHA+high-ω6, and 1% EPA/DHA+high-ω3) on Atlantic salmon (Salmo salar) during a single infection with sea lice (L. salmonis) and a co-infection with sea lice and ISAv. The overall objectives were to compare the transcriptomic profiles of skin between lice infection alone with co-infection groups and assess differences in gene expression response among animals with different experimental diets. Atlantic salmon smolts were challenged with L. salmonis following a 28-day feeding trial. Fish were then challenged with ISAv at 18 days post-sea lice infection (dpi), and maintained on individual diets, to establish a co-infection model. Skin tissues sampled at 33 dpi were subjected to RNA-seq analysis. The co-infection's overall survival rates were between 37%-50%, while no mortality was observed in the single infection with lice. With regard to the infection status, 756 and 1303 consensus differentially expressed genes (DEGs) among the four diets were identified in "lice infection vs. pre-infection" and "co-infection vs. pre-infection" groups, respectively, that were shared between the four experimental diets. The co-infection groups (co-infection vs. pre-infection) included up-regulated genes associated with glycolysis, the interferon pathway, complement cascade activity, and heat shock protein family, while the down-regulated genes were related to antigen presentation and processing, T-cell activation, collagen formation, and extracellular matrix. Pathway enrichment analysis conducted between infected groups (lice infection vs. co-infection) resulted in several immune-related significant GO terms and pathways unique to this group, such as "autophagosome", "cytosolic DNA-sensing pathway" and "response to type I interferons". Understanding how experimental functional feeds can impact the host response and the trajectory of co-infections will be an essential step in identifying efficacious intervention strategies that account for the complexities of disease in open cage culture.
Asunto(s)
Alimentación Animal , Enfermedades de los Peces , Isavirus , Infecciones por Orthomyxoviridae , Salmo salar/microbiología , Animales , Acuicultura , Coinfección , Copépodos , Dieta , Ácidos Docosahexaenoicos/farmacología , Ácido Eicosapentaenoico/farmacología , Ácidos Grasos Omega-3/farmacología , Ácidos Grasos Omega-6/farmacología , Piel , TranscriptomaRESUMEN
This study was conducted to determine the effects of a co-infection with Moritella viscosa at different exposure levels of sea lice Lepeophtheirus salmonis in Atlantic salmon (Salmo salar). M. viscosa (1.14 × 106 cfu/ml) was introduced to all experimental tanks at 10 days post-lice infection (dpLs). Mean lice counts decreased over time in both the medium lice co-infection (31.5 ± 19.0 at 7 dpLs; 16.9 ± 9.3 at 46 dpLs) and high lice co-infection (62.0 ± 10.8 at 7 dpLs; 37.6 ± 11.3 at 46 dpLs). There were significantly higher mortalities and more severe skin lesions in the high lice co-infected group compared to medium lice co-infected group or M. viscosa-only infection. Quantitative gene expression analysis detected a significant upregulation of genes in skin from the high lice co-infection group consistent with severe inflammation (il-8, mmp-9, hep, saa). Skin lesions retrieved throughout the study were positive for M. viscosa growth, but these were rarely located in regions associated with lice. These results suggest that while M. viscosa infection itself may induce skin lesion development in salmon, co-infection with high numbers of lice can enhance this impact and significantly reduce the ability of these lesions to resolve, resulting in increased mortality.