Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Chem ; 16(2): 168-172, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37945833

RESUMEN

The structure and bonding of radium (Ra) is poorly understood because of challenges arising from its scarcity and radioactivity. Here we report the synthesis of a molecular Ra2+ complex using 226Ra and the organic ligand dibenzo-30-crown-10, and its characterization in the solid state by single-crystal X-ray diffraction. The crystal structure of the Ra2+ complex shows an 11-coordinate arrangement comprising the 10 donor O atoms of dibenzo-30-crown-10 and that of a bound water molecule. Under identical crystallization conditions, barium (Ba2+) yielded a 10-coordinate 'Pac-Man'-shaped structure lacking water. Furthermore, the bond distance between the Ra centre and the O atom of the coordinated water is substantially longer than would be predicted from the ionic radius of Ra2+ and by analogy with Ba2+, supporting greater water lability in Ra2+ complexes than in their Ba2+ counterparts. Barium often serves as a non-radioactive surrogate for radium, but our findings show that Ra2+ chemistry cannot always be predicted using Ba2+.

2.
ACS Omega ; 8(2): 2281-2290, 2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36687031

RESUMEN

Laser-induced fluorescence spectroscopy, Raman scattering, and partial least squares regression models were optimized for the quantification of samarium (0-150 µg mL-1), europium (0-75 µg mL-1), and lithium chloride (0.1-12 M) with a transformational preprocessing strategy. Selecting combinations of preprocessing methods to optimize the prediction performance of regression models is frequently a major bottleneck for chemometric analysis. Here, we propose an optimization tool using an innovative combination of optimal experimental designs for selecting preprocessing transformation and a genetic algorithm (GA) for feature selection. A D-optimal design containing 26 samples (i.e., combinations of preprocessing strategies) and a user-defined design (576 samples) did not statistically lower the root mean square error of the prediction (RMSEP). The greatest improvement in prediction performance was achieved when a GA was used for feature selection. This feature selection greatly lowered RMSEP statistics by an average of 53%, resulting in the top models with percent RMSEP values of 0.91, 3.5, and 2.1% for Sm(III), Eu(III), and LiCl, respectively. These results indicate that preprocessing corrections (e.g., scatter, scaling, noise, and baseline) alone cannot realize the optimal regression model; feature selection is a more crucial aspect to consider. This unique approach provides a powerful tool for approaching the true optimum prediction performance and can be applied to numerous fields of spectroscopy and chemometrics to rapidly construct models.

3.
Inorg Chem ; 61(1): 193-205, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-34914366

RESUMEN

A cerium-oxo nanocluster capped by chloride ligands, [CeIV38-nCeIIInO56-(n+1)(OH)n+1Cl51(H2O)11]10- (n = 1-24), has been isolated from acidic chloride solutions by using potassium counterions. The crystal structure was elucidated using single crystal X-ray diffraction. At the center of the cluster is a {Ce14} core that exhibits the same fluorite-type structure as bulk CeO2, with eight-coordinate Ce sites bridged by tetrahedral oxo anions. The {Ce14} is further surrounded by a peripheral shell of six tetranuclear {Ce4} subunits that are located on each of the faces of the core to yield the {Ce38} cluster. The surface of the cluster is capped by 51 bridging/terminal chloride ligands and 11 water molecules; the anionic cluster is charge balanced by potassium counterions that exist in the outer coordination sphere. While assignment of the Ce oxidation state by bond valence summation was ambiguous, Ce L3-edge X-ray absorption, X-ray photoelectron, and UV-vis-NIR absorption results were consistent with a CeIII/CeIV cluster. Systematic changes in the XANES and UV-vis-NIR absorption spectra over time pointed to reactivity of the cluster upon exposure to air. These changes were examined using single crystal X-ray diffraction, and a clear single-crystal-to-single-crystal transformation was captured; an overall loss of surface-bound chlorides and water molecules as well as new µ2-OH sites was observed on the cluster surface. This work provides a rare snapshot of metal oxide cluster reactivity. The results may hold implications for understanding the physical and chemical properties of ceria nanoparticles and provide insight into the behavior of other metal-oxo clusters of significant technological and environmental interest.

4.
Dalton Trans ; 50(16): 5483-5492, 2021 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-33908963

RESUMEN

C-term magnetic circular dichroism (MCD) spectroscopy is a powerful method for probing d-d and f-f transitions in paramagnetic metal complexes. However, this technique remains underdeveloped both experimentally and theoretically for studies of U(v) complexes of Oh symmetry, which have been of longstanding interest for probing electronic structure, bonding, and covalency in 5f systems. In this study, C-term NIR MCD of the Laporte forbidden f-f transitions of [UCl6]- and [UF6]- are reported, demonstrating the significant fine structure resolution possible with this technique including for the low energy Γ7 → Γ8 transitions in [UF6]-. The experimental NIR MCD studies were further extended to [U(OC6F5)6]-, [U(CH2SiMe3)6]-, and [U(NC(tBu)(Ph))6]- to evaluate the effects of ligand-type on the f-f MCD fine structure features. Theoretical calculations were conducted to determine the Laporte forbidden f-f transitions and their MCD intensity experimentally observed in the NIR spectra of the U(v) hexahalide complexes, via the inclusion of vibronic coupling, to better understand the underlying spectral fine structure features for these complexes. These spectra and simulations provide an important platform for the application of MCD spectroscopy to this widely studied class of U(v) complexes and identify areas for continued theoretical development.

5.
Chemistry ; 27(5): 1592-1597, 2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33064328

RESUMEN

A number of technologies would benefit from developing inorganic compounds and materials with specific electronic and magnetic exchange properties. Unfortunately, designing compounds with these properties is difficult because metal⋅⋅⋅metal coupling schemes are hard to predict and control. Fully characterizing communication between metals in existing compounds that exhibit interesting properties could provide valuable insight and advance those predictive capabilities. One such class of molecules are the series of Lindqvist iron-functionalized and hexavanadium polyoxovanadate-alkoxide clusters, which we characterized here using V K-edge X-ray absorption spectroscopy. Substantial changes in the pre-edge peak intensities were observed that tracked with the V 3d-electron count. The data also suggested substantial delocalization between the vanadium cations. Meanwhile, the FeIII cations were electronically isolated from the polyoxovanadate core.

6.
J Synchrotron Radiat ; 27(Pt 2): 446-454, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-32153283

RESUMEN

X-ray absorption spectroscopy (XAS) beamlines worldwide are steadily increasing their emphasis on full photon-in/photon-out spectroscopies, such as resonant inelastic X-ray scattering (RIXS), resonant X-ray emission spectroscopy (RXES) and high energy resolution fluorescence detection XAS (HERFD-XAS). In such cases, each beamline must match the choice of emission spectrometer to the scientific mission of its users. Previous work has recently reported a miniature tender X-ray spectrometer using a dispersive Rowland refocusing (DRR) geometry that functions with high energy resolution even with a large X-ray spot size on the sample [Holden et al. (2017). Rev. Sci. Instrum. 88, 073904]. This instrument has been used in the laboratory in multiple studies of non-resonant X-ray emission spectroscopy using a conventional X-ray tube, though only for preliminary measurements at a low-intensity microfocus synchrotron beamline. This paper reports an extensive study of the performance of a miniature DRR spectrometer at an unfocused wiggler beamline, where the incident monochromatic flux allows for resonant studies which are impossible in the laboratory. The results support the broader use of the present design and also suggest that the DRR method with an unfocused beam could have important applications for materials with low radiation damage thresholds and that would not survive analysis on focused beamlines.

7.
J Am Chem Soc ; 141(49): 19404-19414, 2019 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-31794205

RESUMEN

A major chemical challenge facing implementation of 225Ac in targeted alpha therapy-an emerging technology that has potential for treatment of disease-is identifying an 225Ac chelator that is compatible with in vivo applications. It is unclear how to tailor a chelator for Ac binding because Ac coordination chemistry is poorly defined. Most Ac chemistry is inferred from radiochemical experiments carried out on microscopic scales. Of the few Ac compounds that have been characterized spectroscopically, success has only been reported for simple inorganic ligands. Toward advancing understanding in Ac chelation chemistry, we have developed a method for characterizing Ac complexes that contain highly complex chelating agents using small quantities (µg) of 227Ac. We successfully characterized the chelation of Ac3+ by DOTP8- using EXAFS, NMR, and DFT techniques. To develop confidence and credibility in the Ac results, comparisons with +3 cations (Am, Cm, and La) that could be handled on the mg scale were carried out. We discovered that all M3+ cations (M = Ac, Am, Cm, La) were completely encapsulated within the binding pocket of the DOTP8- macrocycle. The computational results highlighted the stability of the M(DOTP)5- complexes.


Asunto(s)
Actinio/química , Americio/química , Quelantes/química , Complejos de Coordinación/síntesis química , Curio/química , Lantano/química , Compuestos Organofosforados/química , Radiofármacos/síntesis química , Complejos de Coordinación/química , Ligandos , Estructura Molecular , Radiofármacos/química
8.
Chem Sci ; 10(26): 6508-6518, 2019 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-31341603

RESUMEN

A series of trivalent f-block tungstates, MW2O7(OH)(H2O) (M = La, Ce, Pr, Nd, and Pu) and AmWO4(OH), have been prepared in crystalline form using hydrothermal methods. Both structure types take the form of 3D networks where MW2O7(OH)(H2O) is assembled from infinite chains of distorted tungstate octahedra linked by isolated MO8 bicapped trigonal prisms; whereas AmWO4(OH) is constructed from edge-sharing AmO8 square antiprisms connected by distorted tungstate trigonal bipyramids. PuW2O7(OH)(H2O) crystallizes as red plates; an atypical color for a Pu(iii) compound. Optical absorption spectra acquired from single crystals show strong, broadband absorption in the visible region. A similar feature is observed for CeW2O7(OH)(H2O), but not for AmWO4(OH). Here we demonstrate that these significantly different optical properties do not stem directly from the 5f electrons, as in both systems the valence band has mostly O-2p character and the conduction band has mostly W-5d character. Furthermore, the quasi-particle gap is essentially unaffected by the 5f degrees of freedom. Despite this, our analysis demonstrates that the f-electron covalency effects are quite important and substantially different energetically in PuW2O7(OH)(H2O) and AmWO4(OH), indicating that the optical gap alone cannot be used to infer conclusions concerning the f electron contribution to the chemical bond in these systems.

9.
J Am Chem Soc ; 140(51): 17977-17984, 2018 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-30540455

RESUMEN

Evaluating the nature of chemical bonding for actinide elements represents one of the most important and long-standing problems in actinide science. We directly address this challenge and contribute a Cl K-edge X-ray absorption spectroscopy and relativistic density functional theory study that quantitatively evaluates An-Cl covalency in AnCl62- (AnIV = Th, U, Np, Pu). The results showed significant mixing between Cl 3p- and AnIV 5f- and 6d-orbitals (t1u*/t2u* and t2 g*/eg *), with the 6d-orbitals showing more pronounced covalent bonding than the 5f-orbitals. Moving from Th to U, Np, and Pu markedly changed the amount of M-Cl orbital mixing, such that AnIV 6d - and Cl 3p-mixing decreased and metal 5f - and Cl 3p-orbital mixing increased across this series.

10.
Chem Sci ; 9(35): 7078-7090, 2018 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-30310628

RESUMEN

Understanding actinide(iii) (AnIII = CmIII, AmIII, AcIII) solution-phase speciation is critical for controlling many actinide processing schemes, ranging from medical applications to reprocessing of spent nuclear fuel. Unfortunately, in comparison to most elements in the periodic table, AnIII speciation is often poorly defined in complexing aqueous solutions and in organic media. This neglect - in large part - is a direct result of the radioactive properties of these elements, which make them difficult to handle and acquire. Herein, we surmounted some of the handling challenges associated with these exotic 5f-elements and characterized CmIII, AmIII, and AcIII using AnIII L3-edge X-ray absorption spectroscopy (XAS) as a function of increasing nitric acid (HNO3) concentration. Our results revealed that actinide aquo ions, An(H2O) x 3+ (x = 9.6 ± 0.7, 8.9 ± 0.8, and 10.0 ± 0.9 for CmIII, AmIII, and AcIII), were the dominant species in dilute HNO3 (0.05 M). In concentrated HNO3 (16 M), shell-by-shell fitting of the extended X-ray fine structure (EXAFS) data showed the nitrate complexation increased, such that the average stoichiometries of Cm(NO3)4.1±0.7(H2O)5.7±1.3 (1.1±0.2)-, Am(NO3)3.4±0.7(H2O)5.4±0.5 (0.4±0.1)-, and Ac(NO3)2.3±1.7(H2O)8.3±5.2 (0.7±0.5)+ were observed. Data obtained at the intermediate HNO3 concentration (4 M) were modeled as a linear combination of the 0.05 and 16 M spectra. For all three metals, the intermediate models showed larger contributions from the 0.05 M HNO3 spectra than from the 16 M HNO3 spectra. Additionally, these efforts enabled the Cm-NO3 and Ac-NO3 distances to be measured for the first time. Moreover, the AnIII L3-edge EXAFS results, contribute to the growing body of knowledge associated with CmIII, AmIII, and AcIII coordination chemistry, in particular toward advancing understanding of AnIII solution phase speciation.

11.
Dalton Trans ; 47(41): 14452-14461, 2018 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-30168828

RESUMEN

Characterizing how actinide properties change across the f-element series is critical for improving predictive capabilities and solving many nuclear problems facing our society. Unfortunately, it is difficult to make direct comparisons across the 5f-element series because so little is known about trans-plutonium elements. Results described herein help to address this issue through isolation of An(S2CNEt2)3(N2C12H8) (Am, Cm, and Cf). These findings included the first single crystal X-ray diffraction measurements of Cm-S (mean of 2.86 ± 0.04 Å) and Cf-S (mean of 2.84 ± 0.04 Å) bond distances. Furthermore, they highlight the potential of An(S2CNEt2)3(N2C12H8) for providing a test bed for comparative analyses of actinide versus lanthanide bonding interactions.

12.
Inorg Chem ; 57(14): 8106-8115, 2018 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-29975519

RESUMEN

A series of uranium amides were synthesized from N, N, N-cyclohexyl(trimethylsilyl)lithium amide [Li][N(TMS)Cy] and uranium tetrachloride to give U(NCySiMe3) x(Cl)4- x, where x = 2, 3, or 4. The diamide was isolated as a bimetallic, bridging lithium chloride adduct ((UCl2(NCyTMS)2)2-LiCl(THF)2), and the tris(amide) was isolated as the lithium chloride adduct of the monometallic species (UCl(NCyTMS)3-LiCl(THF)2). The tetraamide complex was isolated as the four-coordinate pseudotetrahedron. Cyclic voltammetry revealed an easily accessible reversible oxidation wave, and upon chemical oxidation, the UV amido cation was isolated in near-quantitative yields. The synthesis of this family of compounds allows a direct comparison of the electronic structure and properties of isostructural UIV and UV tetraamide complexes. Spectroscopic investigations consisting of UV-vis, NIR, MCD, EPR, and U L3-edge XANES, along with density functional and wave function calculations, of the four-coordinate UIV and UV complexes have been used to understand the electronic structure of these pseudotetrahedral complexes.

13.
Inorg Chem ; 57(7): 3782-3797, 2018 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-29561140

RESUMEN

Thenoyltrifluoroacetone (HTTA)-based extractions represent popular methods for separating microscopic amounts of transuranic actinides (i.e., Np and Pu) from macroscopic actinide matrixes (e.g. bulk uranium). It is well-established that this procedure enables +4 actinides to be selectively removed from +3, + 5, and +6 f-elements. However, even highly skilled and well-trained researchers find this process complicated and (at times) unpredictable. It is difficult to improve the HTTA extraction-or find alternatives-because little is understood about why this separation works. Even the identities of the extracted species are unknown. In addressing this knowledge gap, we report here advances in fundamental understanding of the HTTA-based extraction. This effort included comparatively evaluating HTTA complexation with +4 and +3 metals (MIV = Zr, Hf, Ce, Th, U, Np, and Pu vs MIII = Ce, Nd, Sm, and Yb). We observed +4 metals formed neutral complexes of the general formula MIV(TTA)4. Meanwhile, +3 metals formed anionic MIII(TTA)4- species. Characterization of these M(TTA)4x- ( x = 0, 1) compounds by UV-vis-NIR, IR, 1H and 19F NMR, single-crystal X-ray diffraction, and X-ray absorption spectroscopy (both near-edge and extended fine structure) was critical for determining that NpIV(TTA)4 and PuIV(TTA)4 were the primary species extracted by HTTA. Furthermore, this information lays the foundation to begin developing and understanding of why the HTTA extraction works so well. The data suggest that the solubility differences between MIV(TTA)4 and MIII(TTA)4- are likely a major contributor to the selectivity of HTTA extractions for +4 cations over +3 metals. Moreover, these results will enable future studies focused on explaining HTTA extractions preference for +4 cations, which increases from Np IV to PuIV, HfIV, and ZrIV.

14.
Chem Sci ; 8(9): 6076-6091, 2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-28989638

RESUMEN

The isolation of [K(2.2.2-cryptand)][Ln(C5H4SiMe3)3], formally containing LnII, for all lanthanides (excluding Pm) was surprising given that +2 oxidation states are typically regarded as inaccessible for most 4f-elements. Herein, X-ray absorption near-edge spectroscopy (XANES), ground-state density functional theory (DFT), and transition dipole moment calculations are used to investigate the possibility that Ln(C5H4SiMe3)31- (Ln = Pr, Nd, Sm, Gd, Tb, Dy, Y, Ho, Er, Tm, Yb and Lu) compounds represented molecular LnII complexes. Results from the ground-state DFT calculations were supported by additional calculations that utilized complete-active-space multi-configuration approach with second-order perturbation theoretical correction (CASPT2). Through comparisons with standards, Ln(C5H4SiMe3)31- (Ln = Sm, Tm, Yb, Lu, Y) are determined to contain 4f6 5d0 (SmII), 4f13 5d0 (TmII), 4f14 5d0 (YbII), 4f14 5d1 (LuII), and 4d1 (YII) electronic configurations. Additionally, our results suggest that Ln(C5H4SiMe3)31- (Ln = Pr, Nd, Gd, Tb, Dy, Ho, and Er) also contain LnII ions, but with 4f n 5d1 configurations (not 4f n+1 5d0). In these 4f n 5d1 complexes, the C3h-symmetric ligand environment provides a highly shielded 5d-orbital of a' symmetry that made the 4f n 5d1 electronic configurations lower in energy than the more typical 4f n+1 5d0 configuration.

15.
J Am Chem Soc ; 139(38): 13361-13375, 2017 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-28817775

RESUMEN

The reaction of 249Bk(OH)4 with iodate under hydrothermal conditions results in the formation of Bk(IO3)3 as the major product with trace amounts of Bk(IO3)4 also crystallizing from the reaction mixture. The structure of Bk(IO3)3 consists of nine-coordinate BkIII cations that are bridged by iodate anions to yield layers that are isomorphous with those found for AmIII, CfIII, and with lanthanides that possess similar ionic radii. Bk(IO3)4 was expected to adopt the same structure as M(IO3)4 (M = Ce, Np, Pu), but instead parallels the structural chemistry of the smaller ZrIV cation. BkIII-O and BkIV-O bond lengths are shorter than anticipated and provide further support for a postcurium break in the actinide series. Photoluminescence and absorption spectra collected from single crystals of Bk(IO3)4 show evidence for doping with BkIII in these crystals. In addition to luminescence from BkIII in the Bk(IO3)4 crystals, a broad-band absorption feature is initially present that is similar to features observed in systems with intervalence charge transfer. However, the high-specific activity of 249Bk (t1/2 = 320 d) causes oxidation of BkIII and only BkIV is present after a few days with concomitant loss of both the BkIII luminescence and the broadband feature. The electronic structure of Bk(IO3)3 and Bk(IO3)4 were examined using a range of computational methods that include density functional theory both on clusters and on periodic structures, relativistic ab initio wave function calculations that incorporate spin-orbit coupling (CASSCF), and by a full-model Hamiltonian with spin-orbit coupling and Slater-Condon parameters (CONDON). Some of these methods provide evidence for an asymmetric ground state present in BkIV that does not strictly adhere to Russel-Saunders coupling and Hund's Rule even though it possesses a half-filled 5f 7 shell. Multiple factors contribute to the asymmetry that include 5f electrons being present in microstates that are not solely spin up, spin-orbit coupling induced mixing of low-lying excited states with the ground state, and covalency in the BkIV-O bonds that distributes the 5f electrons onto the ligands. These factors are absent or diminished in other f7 ions such as GdIII or CmIII.

16.
Nat Chem ; 9(9): 856-861, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28837172

RESUMEN

Electron transfer in mixed-valent transition-metal complexes, clusters and materials is ubiquitous in both natural and synthetic systems. The degree to which intervalence charge transfer (IVCT) occurs, dependent on the degree of delocalization, places these within class II or III of the Robin-Day system. In contrast to the d-block, compounds of f-block elements typically exhibit class I behaviour (no IVCT) because of localization of the valence electrons and poor spatial overlap between metal and ligand orbitals. Here, we report experimental and computational evidence for delocalization of 5f electrons in the mixed-valent PuIII/PuIV solid-state compound, Pu3(DPA)5(H2O)2 (DPA = 2,6-pyridinedicarboxylate). The properties of this compound are benchmarked by the pure PuIII and PuIV dipicolinate complexes, [PuIII(DPA)(H2O)4]Br and PuIV(DPA)2(H2O)3·3H2O, as well as by a second mixed-valent compound, PuIII[PuIV(DPA)3H0.5]2, that falls into class I instead. Metal-to-ligand charge transfer is involved in both the formation of Pu3(DPA)5(H2O)2 and in the IVCT.

17.
J Am Chem Soc ; 139(25): 8667-8677, 2017 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-28613849

RESUMEN

Developing a better understanding of covalency (or orbital mixing) is of fundamental importance. Covalency occupies a central role in directing chemical and physical properties for almost any given compound or material. Hence, the concept of covalency has potential to generate broad and substantial scientific advances, ranging from biological applications to condensed matter physics. Given the importance of orbital mixing combined with the difficultly in measuring covalency, estimating or inferring covalency often leads to fiery debate. Consider the 60-year controversy sparked by Seaborg and co-workers ( Diamond, R. M.; Street, K., Jr.; Seaborg, G. T. J. Am. Chem. Soc. 1954 , 76 , 1461 ) when it was proposed that covalency from 5f-orbitals contributed to the unique behavior of americium in chloride matrixes. Herein, we describe the use of ligand K-edge X-ray absorption spectroscopy (XAS) and electronic structure calculations to quantify the extent of covalent bonding in-arguably-one of the most difficult systems to study, the Am-Cl interaction within AmCl63-. We observed both 5f- and 6d-orbital mixing with the Cl-3p orbitals; however, contributions from the 6d-orbitals were more substantial. Comparisons with the isoelectronic EuCl63- indicated that the amount of Cl 3p-mixing with EuIII 5d-orbitals was similar to that observed with the AmIII 6d-orbitals. Meanwhile, the results confirmed Seaborg's 1954 hypothesis that AmIII 5f-orbital covalency was more substantial than 4f-orbital mixing for EuIII.


Asunto(s)
Americio/química , Cloruros/química
18.
Phys Chem Chem Phys ; 19(26): 17300-17313, 2017 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-28642944

RESUMEN

We present a combined ab initio theoretical and experimental study of the magnetic circular dichroism (MCD) spectrum of the octahedral UCl6- complex ion in the UV-Vis spectral region. The ground state is an orbitally non-degenerate doublet E5/2u and the MCD is a -term spectrum caused by spin-orbit coupling. Calculations of the electronic spectrum at various levels of theory indicate that differential dynamic electron correlation has a strong influence on the energies of the dipole-allowed transitions and the envelope of the MCD spectrum. The experimentally observed bands are assigned to dipole-allowed ligand-to-metal charge transfer into the 5f shell, and 5f to 6d transitions. Charge transfer excitations into the U 6d shell appear at much higher energies. The MCD-allowed transitions can be assigned via their signs of the -terms: Under Oh double group symmetry, E5/2u → E5/2g transitions have negative -terms whereas E5/2u → F3/2g transitions have positive -terms if the ground state g-factor is negative, as it is the case for UCl6-.

19.
Inorg Chem ; 56(12): 7065-7080, 2017 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-28548499

RESUMEN

Inspired by the multielectron redox chemistry achieved using conventional organic-based redox-active ligands, we have characterized a series of iron-functionalized polyoxovanadate-alkoxide clusters in which the metal oxide scaffold functions as a three-dimensional, electron-deficient metalloligand. Four heterometallic clusters were prepared through sequential reduction, demonstrating that the metal oxide scaffold is capable of storing up to four electrons. These reduced products were characterized by cyclic voltammetry, IR, electronic absorption, and 1H NMR spectroscopies. Moreover, Mössbauer and X-ray absorption spectroscopies suggest that the redox events involve primarily the vanadium ions, while the iron atoms remained in the 3+ oxidation state throughout the redox series. In this sense, the vanadium portion of the cluster mimics a conventional organic-based redox-active ligand bound to an iron(III) ion. Magnetic coupling within the hexanuclear cluster was characterized using SQUID magnetometry. Overall, the results suggest extensive electronic delocalization between the metal centers of the cluster core. These results demonstrate the ability of electronically flexible, reducible metal oxide supports to function as redox-active reservoirs for transition-metal centers.

20.
Science ; 353(6302)2016 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-27563098

RESUMEN

Berkelium is positioned at a crucial location in the actinide series between the inherently stable half-filled 5f(7) configuration of curium and the abrupt transition in chemical behavior created by the onset of a metastable divalent state that starts at californium. However, the mere 320-day half-life of berkelium's only available isotope, (249)Bk, has hindered in-depth studies of the element's coordination chemistry. Herein, we report the synthesis and detailed solid-state and solution-phase characterization of a berkelium coordination complex, Bk(III)tris(dipicolinate), as well as a chemically distinct Bk(III) borate material for comparison. We demonstrate that berkelium's complexation is analogous to that of californium. However, from a range of spectroscopic techniques and quantum mechanical calculations, it is clear that spin-orbit coupling contributes significantly to berkelium's multiconfigurational ground state.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA