Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Behav Addict ; 12(4): 1019-1031, 2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38141066

RESUMEN

Background: Data implicate overlaps in neurobiological pathways involved in appetite regulation and addictive disorders. Despite different neuroendocrine measures having been associated with both gambling disorder (GD) and food addiction (FA), how appetite-regulating hormones may relate to the co-occurrence of both entities remain incompletely understood. Aims: To compare plasma concentrations of ghrelin, leptin, adiponectin, and liver-expressed antimicrobial peptide 2 (LEAP-2) between patients with GD, with and without FA, and to explore the association between circulating hormonal concentrations and neuropsychological and clinical features in individuals with GD and FA. Methods: The sample included 297 patients diagnosed with GD (93.6% males). None of the patients with GD had lifetime diagnosis of an eating disorder. FA was evaluated with the Yale Food Addiction Scale 2.0. All patients were assessed through a semi-structured clinical interview and a psychometric battery including neuropsychological tasks. Blood samples to measure hormonal variables and anthropometric variables were also collected. Results: From the total sample, FA was observed in 23 participants (FA+) (7.7% of the sample, 87% males). When compared participants with and without FA, those with FA+ presented both higher body mass index (BMI) (p < 0.001) and leptin concentrations, after adjusting for BMI (p = 0.013). In patients with FA, leptin concentrations positively correlated with impulsivity, poorer cognitive flexibility, and poorer inhibitory control. Other endocrine measures did not differ between groups. Discussion and conclusions: The present study implicates leptin in co-occurring GD and FA. Among these patients, leptin concentration has been associated with clinical and neuropsychological features, such as impulsivity and cognitive performance in certain domains.


Asunto(s)
Adicción a la Comida , Juego de Azar , Leptina , Femenino , Humanos , Masculino , Conducta Adictiva/sangre , Adicción a la Comida/sangre , Adicción a la Comida/complicaciones , Juego de Azar/sangre , Juego de Azar/complicaciones , Conducta Impulsiva , Leptina/sangre
2.
Nutrients ; 14(23)2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36501114

RESUMEN

Gambling disorder (GD) is a modestly prevalent and severe condition for which neurobiology is not yet fully understood. Although alterations in signals involved in energy homeostasis have been studied in substance use disorders, they have yet to be examined in detail in GD. The aims of the present study were to compare different endocrine and neuropsychological factors between individuals with GD and healthy controls (HC) and to explore endocrine interactions with neuropsychological and clinical variables. A case−control design was performed in 297 individuals with GD and 41 individuals without (healthy controls; HCs), assessed through a semi-structured clinical interview and a psychometric battery. For the evaluation of endocrine and anthropometric variables, 38 HCs were added to the 41 HCs initially evaluated. Individuals with GD presented higher fasting plasma ghrelin (p < 0.001) and lower LEAP2 and adiponectin concentrations (p < 0.001) than HCs, after adjusting for body mass index (BMI). The GD group reported higher cognitive impairment regarding cognitive flexibility and decision-making strategies, a worse psychological state, higher impulsivity levels, and a more dysfunctional personality profile. Despite failing to find significant associations between endocrine factors and either neuropsychological or clinical aspects in the GD group, some impaired cognitive dimensions (i.e., WAIS Vocabulary test and WCST Perseverative errors) and lower LEAP2 concentrations statistically predicted GD presence. The findings from the present study suggest that distinctive neuropsychological and endocrine dysfunctions may operate in individuals with GD and predict GD presence. Further exploration of endophenotypic vulnerability pathways in GD appear warranted, especially with respect to etiological and therapeutic potentials.


Asunto(s)
Juego de Azar , Humanos , Estudios de Casos y Controles , Juego de Azar/psicología , Conducta Impulsiva/fisiología , Personalidad
3.
Cells ; 11(3)2022 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-35159134

RESUMEN

Data gleaned recently shows that ghrelin, a stomach derived peptide, and liver-expressed-antimicrobial peptide 2 (LEAP-2) play opposite roles on food intake. However, the data available with LEAP-2 in relation to in vivo studies are still very scanty and some key questions regarding the interplay among ghrelin and LEAP-2 remain to be answered. In this work, using rats and mice, we study fasting-induced food intake as well as testing the effect of diet exposure, e.g., standard diet and high fat diet, in terms of ghrelin-induced food intake. The anorexigenic effect of LEAP-2 on fasting induced food intake appears to be dependent on energy stores, being more evident in ob/ob than in wild type mice and also in animals exposed to high fat diet. On the other hand, LEAP-2 administration markedly inhibited ghrelin-induced food intake in lean, obese (ob/ob and DIO) mice, aged rats and GH-deficient dwarf rats. In contrast, the inhibitory effect on glucose levels can only be observed in some specific experimental models indicating that the mechanisms involved are likely to be quite different. Taken together from these data, LEAP-2 emerged as a potential candidate to be therapeutically useful in obesity.


Asunto(s)
Péptidos Catiónicos Antimicrobianos , Ingestión de Alimentos , Ghrelina , Hormona del Crecimiento , Animales , Péptidos Catiónicos Antimicrobianos/metabolismo , Ghrelina/farmacología , Ratones , Nutrientes , Obesidad , Ratas
4.
Mol Nutr Food Res ; 63(2): e1801096, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30383332

RESUMEN

SCOPE: The tumor suppressor p107, a pocket protein member of the retinoblastoma susceptibility protein family, plays an important role in the cell cycle and cellular adipocyte differentiation. Nonetheless, the mechanism by which it influences whole body Energy homeostasis is unknown. METHODS AND RESULTS: The phenotype of p107 knockout (KO) mixed-background C57BL6/129 mice phenotype is studied by focusing on the involvement of white and brown adipose tissue (WAT and BAT) in energy metabolism. It is shown that p107 KO mice are leaner and have high-fat diet resistence. This phenomenon is explained by an increase of energy expenditure. The higher energy expenditure is caused by the activation of thermogenesis and may be mediated by both BAT and the browning of WAT. Consequently, it leads to the resistance of p107 KO mice to high-fat diet effects, prevention of liver steatosis, and improvement of the lipid profile and glucose homeostasis. CONCLUSION: These data allowed the unmasking of a mechanism by which a KO of p107 prevents diet-induced obesity by increasing energy expenditure via increased thermogenesis in BAT and browning of WAT, indicating the relevance of p107 as a modulator of metabolic activity of both brown and white adipocytes. Therefore, it can be targeted for the development of new therapies to ameliorate the metabolic syndrome.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Metabolismo Energético , Proteína p107 Similar a la del Retinoblastoma/fisiología , Termogénesis , Animales , Dieta Alta en Grasa , Hígado Graso/prevención & control , Glucosa/metabolismo , Resistencia a la Insulina , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína p107 Similar a la del Retinoblastoma/deficiencia
5.
Artículo en Inglés | MEDLINE | ID: mdl-29904371

RESUMEN

Mitochondria are important organelles for the adaptation to energy demand that play a central role in bioenergetics metabolism. The mitochondrial architecture and mitochondrial machinery exhibits a high degree of adaptation in relation to nutrient availability. On the other hand, its disruption markedly affects energy homeostasis. The brain, more specifically the hypothalamus, is the main hub that controls energy homeostasis. Nevertheless, until now, almost all studies in relation to mitochondrial dysfunction and energy metabolism have focused in peripheral tissues like brown adipose tissue, muscle, and pancreas. In this review, we highlight the relevance of the hypothalamus and the influence on mitochondrial machinery in its function as well as its consequences in terms of alterations in both energy and metabolic homeostasis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...