Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Virulence ; 10(1): 151-165, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-30829115

RESUMEN

Autophagy is a catabolic pathway required for cellular and organism homeostasis. Autophagy participates in the innate and adaptive immune responses at different levels. Xenophagy is a class of selective autophagy that involves the elimination of intracellular pathogens. Trypanosoma cruzi is the causative agent of Chagas, a disease that affects 8 million individuals worldwide. Previously, our group has demonstrated that autophagy participates in the invasion of T. cruzi in non-phagocytic cells. In this work we have studied the involvement of autophagy in the development of T. cruzi infection in mice. Beclin-1 is a protein essential for autophagy, required for autophagosome biogenesis and maturation. We have performed an acute model of infection on the autophagic deficient Beclin-1 heterozygous knock-out mice (Bcln±) and compared to control Bcln+/+ animals. In addition, we have analyzed the infection process in both peritoneal cells and RAW macrophages. Our results have shown that the infection was more aggressive in the autophagy-deficient mice, which displayed higher numbers of parasitemia, heart´s parasitic nests and mortality rates. We have also found that peritoneal cells derived from Bcln± animals and RAW macrophages treated with autophagy inhibitors displayed higher levels of infection compared to controls. Interestingly, free cytosolic parasites recruited LC3 protein and other markers of xenophagy in control compared to autophagy-deficient cells. Taken together, these data suggest that autophagy plays a protective role against T. cruzi infection in mice, xenophagy being one of the processes activated as part of the repertoire of immune responses generated by the host.


Asunto(s)
Autofagia , Enfermedad de Chagas/inmunología , Interacciones Huésped-Patógeno , Animales , Beclina-1/genética , Beclina-1/inmunología , Enfermedad de Chagas/mortalidad , Modelos Animales de Enfermedad , Inmunidad Innata , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células RAW 264.7 , Trypanosoma cruzi
2.
IUBMB Life ; 64(5): 387-96, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22454195

RESUMEN

The protozoan parasite Trypanosoma cruzi has a complex biological cycle that involves vertebrate and invertebrate hosts. In mammals, the infective trypomastigote form of this parasite can invade several cell types by exploiting phagocytic-like or nonphagocytic mechanisms depending on the class of cell involved. Morphological studies showed that when trypomastigotes contact macrophages, they induce the formation of plasma membrane protrusions that differ from the canonical phagocytosis that occurs in the case of noninfective epimastigotes. In contrast, when trypomastigotes infect epithelial or muscle cells, the cell surface is minimally modified, suggesting the induction of a different class of process. Lysosomal-dependent or -independent T. cruzi invasion of host cells are two different models that describe the molecular and cellular events activated during parasite entry into nonphagocytic cells. In this context, we have previously shown that induction of autophagy in host cells before infection favors T. cruzi invasion. Furthermore, we demonstrate that autophagosomes and the autophagosomal protein LC3 are recruited to the T. cruzi entry sites and that the newly formed T. cruzi parasitophorous vacuole has characteristics of an autophagolysosome. This review summarizes the current knowledge of the molecular and cellular mechanisms of T. cruzi invasion in nonphagocytic cells. Based on our findings, we propose a new model in which T. cruzi takes advantage of the upregulation of autophagy during starvation to increase its successful colonization of host cells.


Asunto(s)
Enfermedad de Chagas/parasitología , Interacciones Huésped-Parásitos , Trypanosoma cruzi/fisiología , Animales , Autofagia , Moléculas de Adhesión Celular/metabolismo , Moléculas de Adhesión Celular/fisiología , Humanos , Lisosomas/parasitología , Modelos Biológicos , Fagocitosis , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...