Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
BMC Plant Biol ; 24(1): 337, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664617

RESUMEN

BACKGROUND: Endophytes mediate the interactions between plants and other microorganisms, and the functional aspects of interactions between endophytes and their host that support plant-growth promotion and tolerance to stresses signify the ecological relevance of the endosphere microbiome. In this work, we studied the bacterial and fungal endophytic communities of olive tree (Olea europaea L.) asymptomatic or low symptomatic genotypes sampled in groves heavily compromised by Xylella fastidiosa subsp. pauca, aiming to characterize microbiota in genotypes displaying differential response to the pathogen. RESULTS: The relationships between bacterial and fungal genera were analyzed both separately and together, in order to investigate the intricate correlations between the identified Operational Taxonomic Units (OTUs). Results suggested a dominant role of the fungal endophytic community compared to the bacterial one, and highlighted specific microbial taxa only associated with asymptomatic or low symptomatic genotypes. In addition, they indicated the occurrence of well-adapted genetic resources surviving after years of pathogen pressure in association with microorganisms such as Burkholderia, Quambalaria, Phaffia and Rhodotorula. CONCLUSIONS: This is the first study to overview endophytic communities associated with several putatively resistant olive genotypes in areas under high X. fastidiosa inoculum pressure. Identifying these negatively correlated genera can offer valuable insights into the potential antagonistic microbial resources and their possible development as biocontrol agents.


Asunto(s)
Endófitos , Genotipo , Olea , Enfermedades de las Plantas , Xylella , Olea/microbiología , Xylella/fisiología , Xylella/genética , Endófitos/fisiología , Endófitos/genética , Enfermedades de las Plantas/microbiología , Microbiota , Bacterias/genética , Bacterias/clasificación , Hongos/fisiología , Hongos/genética
2.
Plants (Basel) ; 12(23)2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-38068561

RESUMEN

Viral infections pose an emerging threat to hemp (Cannabis sativa) cultivation. We used Illumina small (s)RNA sequencing for virome reconstruction and characterization of antiviral RNA interference (RNAi) in monoecious and dioecious hemp varieties, which exhibited different virus-like symptoms. Through de novo and reference-based sRNA assembly, we identified and reconstructed Cannabis cryptic virus (family Partitiviridae), Cannabis sativa mitovirus 1 (Mitoviridae) and Grapevine line pattern virus (Bromoviridae) as well as a novel virus tentatively classified into Partitiviridae. Members of both Partitiviridae and Bromoviridae were targeted by antiviral RNAi, generating 21 nt and, less abundant, 22 nt sRNAs from both strands of the entire virus genome, suggesting the involvement of Dicer-like (DCL) 4 and DCL2 in viral sRNA biogenesis, respectively. Mitovirus sRNAs represented predominantly the positive-sense strand and had a wider size range, with the 21 nt class being most abundant on both strands. For all viruses, 21 and 22 nt sRNAs had predominantly 5'-terminal uridine or cytosine, suggesting their binding to antiviral Argonaute (AGO) 1 and AGO5, respectively. As no clear association of any virus with symptoms was observed, further studies should clarify if these viruses individually or in combination can cause hemp diseases.

3.
Viruses ; 15(7)2023 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-37515219

RESUMEN

Cannabis sativa cultivation is experiencing a period of renewed interest due to the new opportunities for its use in different sectors including food, techno-industrial, construction, pharmaceutical and medical, cosmetics, and textiles. Moreover, its properties as a carbon sequestrator and soil improver make it suitable for sustainable agriculture and climate change mitigation strategies. The increase in cannabis cultivation is generating conditions for the spread of new pathogens. While cannabis fungal and bacterial diseases are better known and characterized, viral infections have historically been less investigated. Many viral infection reports on cannabis have recently been released, highlighting the increasing threat and spread of known and unknown viruses. However, the available information on these pathogens is still incomplete and fragmentary, and it is therefore useful to organize it into a single structured document to provide guidance to growers, breeders, and academic researchers. This review aims to present the historical excursus of cannabis virology, from the pioneering descriptions of virus-like symptoms in the 1940s/50s to the most recent high-throughput sequencing reports. Each of these viruses detected in cannabis will be categorized with an increasing degree of threat according to its potential risk to the crop. Lastly, the development of viral vectors for functional genetics studies will be described, revealing how cannabis virology is evolving not only for the characterization of its virome but also for the development of biotechnological tools for the genetic improvement of this crop.


Asunto(s)
Cannabis , Virosis , Virus , Viroma , Virus/genética , Biotecnología
4.
Plants (Basel) ; 12(9)2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37176860

RESUMEN

Peach latent mosaic viroid (PLMVd) is an important pathogen that causes disease in peaches. Control of this viroid remains problematic because most PLMVd variants are symptomless, and although there are many detection tests in use, the reliability of PCR-based methods is compromised by the complex, branched secondary RNA structure of the viroid and its genetic diversity. In this study, a duplex RT-qPCR method was developed and validated against two previously published single RT-qPCRs, which were potentially able to detect all known PLMVd variants when used in tandem. In addition, in order to simplify the sample preparation, rapid-extraction protocols based on the use of crude sap or tissue printing were compared with commercially available RNA purification kits. The performance of the new procedure was evaluated in a test performance study involving five participant laboratories. The new method, in combination with rapid-sample-preparation approaches, was demonstrated to be feasible and reliable, with the advantage of detecting all different PLMVd isolates/variants assayed in a single reaction, reducing costs for routine diagnosis.

5.
Data Brief ; 47: 108948, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36860406

RESUMEN

In this article we present datasets used for the construction of a composite indicator, the Social Clean Energy Access (Social CEA) Index, presented in detail in [1]. This article consists of comprehensive social development data related to electricity access, collected from several sources, and processed according to the methodology described in [1]. The new composite index includs 24 indicators capturing the status of the social dimensions related to electricity access for 35 SSA countries. The development of the Social CEA Index was supported by an extensive review of the literature about electricity access and social development which led to the selection of its indicators. The structure was evaluated for its soundness using correlational assessments and principal component analyses. The raw data provided allow stakeholders to focus on specific country indicators and to observe how scores on these indicators contributed to a country overall rank. The Social CEA Index also allows to understand the number of best performing countries (out of a total of 35) for each indicator. This allows different stakeholders to identify which the weakest dimensions are of social development and thus help in addressing priorities for action for funding towards specific electrification projects. The data can be used to assign weights according to stakeholders' specific requirements. Finally, the dataset can be used for the case of Ghana to monitor the Social CEA Index progress over time through a dimension's breakdown approach.

6.
Int J Mol Sci ; 23(13)2022 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-35805989

RESUMEN

Endophytic plant-growth-promoting bacteria (ePGPB) are interesting tools for pest management strategies. However, the molecular interactions underlying specific biocontrol effects, particularly against phytopathogenic viruses, remain unexplored. Herein, we investigated the antiviral effects and triggers of induced systemic resistance mediated by four ePGPB (Paraburkholderia fungorum strain R8, Paenibacillus pasadenensis strain R16, Pantoea agglomerans strain 255-7, and Pseudomonas syringae strain 260-02) against four viruses (Cymbidium Ring Spot Virus-CymRSV; Cucumber Mosaic Virus-CMV; Potato Virus X-PVX; and Potato Virus Y-PVY) on Nicotiana benthamiana plants under controlled conditions and compared them with a chitosan-based resistance inducer product. Our studies indicated that ePGPB- and chitosan-treated plants presented well-defined biocontrol efficacy against CymRSV and CMV, unlike PVX and PVY. They exhibited significant reductions in symptom severity while promoting plant height compared to nontreated, virus-infected controls. However, these phenotypic traits showed no association with relative virus quantification. Moreover, the tested defense-related genes (Enhanced Disease Susceptibility-1 (EDS1), Non-expressor of Pathogenesis-related genes-1 (NPR1), and Pathogenesis-related protein-2B (PR2B)) implied the involvement of a salicylic-acid-related defense pathway triggered by EDS1 gene upregulation.


Asunto(s)
Quitosano , Cucumovirus , Infecciones por Citomegalovirus , Potexvirus , Quitosano/farmacología , Cucumovirus/genética , Enfermedades de las Plantas/microbiología , Potexvirus/genética , Pseudomonas syringae , Nicotiana/microbiología
7.
Pathogens ; 11(2)2022 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-35215142

RESUMEN

Rapid and sensitive assays for the identification of plant pathogens are necessary for the effective management of crop diseases. The main limitation of current diagnostic testing is the inability to combine broad and sensitive pathogen detection with the identification of key strains, pathovars, and subspecies. Such discrimination is necessary for quarantine pathogens, whose management is strictly dependent on genotype identification. To address these needs, we have established and evaluated a novel all-in-one diagnostic assay based on nanopore sequencing for the detection and simultaneous characterization of quarantine pathogens, using Xylella fastidiosa as a case study. The assay proved to be at least as sensitive as standard diagnostic tests and the quantitative results agreed closely with qPCR-based analysis. The same sequencing results also allowed discrimination between subspecies when present either individually or in combination. Pathogen detection and typing were achieved within 13 min of sequencing owing to the use of an internal control that allowed to stop sequencing when sufficient data had accumulated. These advantages, combined with the use of portable equipment, will facilitate the development of next-generation diagnostic assays for the efficient monitoring of other plant pathogens.

8.
Microorganisms ; 9(11)2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34835513

RESUMEN

Locally adapted maize accessions (landraces) represent an untapped resource of nutritional and resistance traits for breeding, including the shaping of distinct microbiota. Our study focused on five different maize landraces and a reference commercial hybrid, showing different susceptibility to fusarium ear rot, and whether this trait could be related to particular compositions of the bacterial microbiota in the embryo, using different approaches. Our cultivation-independent approach utilized the metabarcoding of a portion of the 16S rRNA gene to study bacterial populations in these samples. Multivariate statistical analyses indicated that the microbiota of the embryos of the accessions grouped in two different clusters: one comprising three landraces and the hybrid, one including the remaining two landraces, which showed a lower susceptibility to fusarium ear rot in field. The main discriminant between these clusters was the frequency of Firmicutes, higher in the second cluster, and this abundance was confirmed by quantification through digital PCR. The cultivation-dependent approach allowed the isolation of 70 bacterial strains, mostly Firmicutes. In vivo assays allowed the identification of five candidate biocontrol strains against fusarium ear rot. Our data revealed novel insights into the role of the maize embryo microbiota and set the stage for further studies aimed at integrating this knowledge into plant breeding programs.

9.
Front Plant Sci ; 12: 667319, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34127927

RESUMEN

Downy mildew, caused by the oomycete Plasmopara viticola, is one of the diseases causing the most severe economic losses to grapevine (Vitis vinifera) production. To date, the application of fungicides is the most efficient method to control the pathogen and the implementation of novel and sustainable disease control methods is a major challenge. RNA interference (RNAi) represents a novel biotechnological tool with a great potential for controlling fungal pathogens. Recently, a candidate susceptibility gene (VviLBDIf7) to downy mildew has been identified in V. vinifera. In this work, the efficacy of RNAi triggered by exogenous double-stranded RNA (dsRNA) in controlling P. viticola infections has been assessed in a highly susceptible grapevine cultivar (Pinot noir) by knocking down VviLBDIf7 gene. The effects of dsRNA treatment on this target gene were assessed by evaluating gene expression, disease severity, and development of vegetative and reproductive structures of P. viticola in the leaf tissues. Furthermore, the effects of dsRNA treatment on off-target (EF1α, GAPDH, PEPC, and PEPCK) and jasmonic acid metabolism (COI1) genes have been evaluated. Exogenous application of dsRNA led to significant reductions both in VviLBDIf7 gene expression, 5 days after the treatment, and in the disease severity when artificial inoculation was carried out 7 days after dsRNA treatments. The pathogen showed clear alterations to both vegetative (hyphae and haustoria) and reproductive structures (sporangiophores) that resulted in stunted growth and reduced sporulation. Treatment with dsRNA showed signatures of systemic activity and no deleterious off-target effects. These results demonstrated the potential of RNAi for silencing susceptibility factors in grapevine as a sustainable strategy for pathogen control, underlying the possibility to adopt this promising biotechnological tool in disease management strategies.

10.
Plant Physiol Biochem ; 160: 294-305, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33540332

RESUMEN

The discovery of new mechanisms of resistance and natural bioactive molecules could be two of the possible ways to reduce fungicide use in vineyard and assure an acceptable and sustainable protection against Plasmopara viticola, the grapevine downy mildew agent. Emission of volatile organic compounds (VOCs), such as terpenes, norisoprenoids, alcohols and aldehydes, is frequently induced in plants in response to attack by pathogens, such as P. viticola, that is known to cause a VOCs increment in cultivars harboring American resistance traits. In this study, the role of leaf VOCs in the resistance mechanism of two resistant cultivars (Mgaloblishvili, a pure Vitis vinifera cultivar, and Bianca, an interspecific hybrid) and the direct antimicrobial activity of four selected VOCs have been investigated. The leaf VOCs profiles, analyzed through solid-phase microextraction gas chromatography-mass spectrometry analysis, as well as the expression of six terpene synthases (TPSs), were determined upon pathogen inoculation. In both cultivars, the expression pattern of six TPSs increased soon after pathogen inoculation and an increment of nine VOCs has been detected. While in Mgaloblishvili VOCs were synthesized early after P. viticola inoculation, they constituted a late response to pathogen in Bianca. All the four terpenes (farnesene, nerolidol, ocimene and valencene), chosen according to the VOC profiles and gene expression analysis, caused a significant reduction (53-100%) in P. viticola sporulation. These results support the role of VOCs into defense mechanisms of both cultivars and suggest their potential role as a natural and eco-friendly solution to protect grapevine from P. viticola.


Asunto(s)
Resistencia a la Enfermedad , Oomicetos/patogenicidad , Enfermedades de las Plantas/microbiología , Vitis/química , Compuestos Orgánicos Volátiles/química , Fungicidas Industriales/química , Regulación de la Expresión Génica de las Plantas , Vitis/microbiología
11.
Microbiol Res ; 244: 126665, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33340794

RESUMEN

Despite sharing many of the traits that have allowed the genus Bacillus to gain recognition for its agricultural relevance, the genus Lysinibacillus is not as well-known and studied. The present study employs in vitro, in vivo, in planta, and in silico approaches to characterize Lysinibacillus fusiformis strain S4C11, isolated from the roots of an apple tree in northern Italy. The in vitro and in vivo assays demonstrated that strain S4C11 possesses an antifungal activity against different fungal pathogens, and is capable of interfering with the germination of Botrytis cinerea conidia, as well as of inhibiting its growth through the production of volatile organic molecules. In planta assays showed that the strain possesses the ability to promote plant growth, that is not host-specific, both in controlled conditions and in a commercial nursery. Biocontrol assays carried out against phytopathogenic viruses gave contrasting results, suggesting that the strain does not activate the host's defense pathways. The in silico analyses were carried out by sequencing the genome of the strain through an innovative approach that combines Illumina and High-Definition Mapping methods, allowing the reconstruction of a main chromosome and two plasmids from strain S4C11. The analysis of the genes encoded by the genome contributed to the characterization of the strain, detecting genes related to the biocontrol effect detected in the experimental trials.


Asunto(s)
Bacillaceae/fisiología , Antibiosis , Bacillaceae/genética , Bacillaceae/aislamiento & purificación , Botrytis/crecimiento & desarrollo , Botrytis/fisiología , Simulación por Computador , Genoma Bacteriano , Italia , Malus/microbiología , Enfermedades de las Plantas/microbiología , Raíces de Plantas/microbiología
12.
Pathogens ; 9(11)2020 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-33233322

RESUMEN

Grapevine Bois noir (BN) is associated with infection by "Candidatus Phytoplasma solani" (CaPsol). In this study, an array of CaPsol strains was identified from 142 symptomatic grapevines in vineyards of northern, central, and southern Italy and North Macedonia. Molecular typing of the CaPsol strains was carried out by analysis of genes encoding 16S rRNA and translation elongation factor EF-Tu, as well as eight other previously uncharacterized genomic fragments. Strains of tuf-type a and b were found to be differentially distributed in the examined geographic regions in correlation with the prevalence of nettle and bindweed. Two sequence variants were identified in each of the four genomic segments harboring hlyC, cbiQ-glyA, trxA-truB-rsuA, and rplS-tyrS-csdB, respectively. Fifteen CaPsol lineages were identified based on distinct combinations of sequence variations within these genetic loci. Each CaPsol lineage exhibited a unique collective restriction fragment length polymorphism (RFLP) pattern and differed from each other in geographic distribution, probably in relation to the diverse ecological complexity of vineyards and their surroundings. This RFLP-based typing method could be a useful tool for investigating the ecology of CaPsol and the epidemiology of its associated diseases. Phylogenetic analyses highlighted that the sequence variants of the gene hlyC, which encodes a hemolysin III-like protein, separated into two clusters consistent with the separation of two distinct lineages on the basis of tufB gene sequences. Alignments of deduced full protein sequences of elongation factor-Tu (tufB gene) and hemolysin III-like protein (hlyC gene) revealed the presence of critical amino acid substitutions distinguishing CaPsol strains of tuf-type a and b. Findings from the present study provide new insights into the genetic diversity and ecology of CaPsol populations in vineyards.

13.
FEMS Microbiol Ecol ; 96(11)2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-33016318

RESUMEN

Bois noir is a grapevine disease causing severe yield loss in vineyards worldwide. It is associated with 'Candidatus Phytoplasma solani', a phloem-limited bacterium transmitted by polyphagous insects. Due to its complex epidemiology, it is difficult to organize effective containment measures. This study aimed to describe the bacterial microbiota associated with 'Candidatus Phytoplasma solani' infected and non-infected insect hosts and vectors to investigate if phytoplasma presence can shape the microbiota. Alpha-diversity analysis showed a low microbiota diversity in these insects, in which few genera were highly abundant. Beta-diversity analysis revealed that the xylem- and phloem-feeding behavior influences the microbiota structure. Moreover, it highlighted that phytoplasma infection is associated with a restructuring of microbiota exclusively in Deltocephalinae insect vectors. Obtained data showed that 'Candidatus Phytoplasma solani' may have adverse effects on the endosymbionts Sulcia and Wolbachia, suggesting a possible fitness modification in the insects. The phytoplasma-antagonistic Dyella was not found in any of the examined insect species. The results indicate an interesting perspective regarding the microbial signatures associated with xylem- and phloem-feeding insects, and determinants that could be relevant to establish whether an insect species can be a vector or not, opening up new avenues for developing microbial resource management-based approaches.


Asunto(s)
Microbiota , Vitis , Insectos Vectores , Filogenia , Enfermedad por Fitoplasma , Enfermedades de las Plantas
14.
Sci Total Environ ; 724: 138127, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32272400

RESUMEN

Nutrition-Sensitive Agriculture (NSA) is a novel concept in agriculture that considers not only yield, but also nutritional value of produce, sustainability of production, and ecological impact of agriculture. In accordance with its goals, NSA would benefit from applying microbial-based products as they are deemed more sustainable than their synthetic counterparts. This study characterized 3 plant-beneficial bacterial strains (Paenibacillus pasadenensis strain R16, Pseudomonas syringae strain 260-02, Bacillus amyloliquefaciens strain CC2) on their biocontrol activity and effect on nutritional and texture quality of romaine lettuce plants (Lactuca sativa) in greenhouse. The pathogens used in the trials are Rhizoctonia solani and Pythium ultimum. The obtained results indicate that strain R16 had a significant ability to cause a statistically significant reduction in the symptoms caused by both P. ultimum (reduction of 32%) and R. solani (reduction of 42%), while the other two strains showed a less efficient biocontrol ability. Indices of the nutritional quality (content in phenols, carotenoids and chlorophyll) were unaffected by the treatments, indicating that the product was equivalent to that obtained without using the bacteria, while the texture of the leaves benefits from the biocontrol treatments. In particular, the mechanical resistance of the leaves was significantly higher in non-treated plants affected by R. solani but was restored to the values of healthy plants when the bacterial inoculants were present as well. The ecological impact was evaluated by characterizing the bacterial microbiota in bulk soil, rhizosphere, and root in the presence or absence of the inoculants. The composition of the microbiota, analyzed with a Unifrac model to describe beta-diversity, was radically different in the rhizosphere and the root endosphere among treatments, while the bulk soil formed a single cluster regardless of treatment, indicating that the use of these treatments did not have an ecological impact outside of the plant.


Asunto(s)
Inoculantes Agrícolas , Agricultura , Valor Nutritivo , Paenibacillus , Enfermedades de las Plantas , Raíces de Plantas , Microbiología del Suelo
15.
Genes (Basel) ; 11(3)2020 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-32121150

RESUMEN

Mgaloblishvili, a Vitis vinifera cultivar, exhibits unique resistance traits against Plasmopara viticola, the downy mildew agent. This offers the unique opportunity of exploring the molecular responses in compatible and incompatible plant-pathogen interaction. In this study, whole transcriptomes of Mgaloblishvili, Pinot noir (a V. vinifera susceptible cultivar), and Bianca (a resistant hybrid) leaves, inoculated and non-inoculated with the pathogen, were used to identify P. viticola effector-encoding genes and plant susceptibility/resistance genes. Multiple effector-encoding genes were identified in P. viticola transcriptome, with remarkable expression differences in relation to the inoculated grapevine cultivar. Intriguingly, five apoplastic effectors specifically associated with resistance in V. vinifera. Gene coexpression network analysis identified specific modules and metabolic changes occurring during infection in the three grapevine cultivars. Analysis of these data allowed, for the first time, the detection in V. vinifera of a putative P. viticola susceptibility gene, encoding a LOB domain-containing protein. Finally, the de novo assembly of Mgaloblishvili, Pinot noir, and Bianca transcriptomes and their comparison highlighted novel candidate genes that might be at the basis of the resistant phenotype. These results open the way to functional analysis studies and to new perspectives in molecular breeding of grapevine for resistance to P. viticola.


Asunto(s)
Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Transcriptoma/genética , Vitis/genética , Regulación de la Expresión Génica de las Plantas/genética , Interacciones Huésped-Patógeno/genética , Oomicetos/genética , Oomicetos/patogenicidad , Enfermedades de las Plantas/microbiología , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/microbiología , Análisis de Secuencia de ARN , Vitis/crecimiento & desarrollo , Vitis/microbiología
16.
Sci Rep ; 9(1): 19522, 2019 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-31862945

RESUMEN

Bois noir, a disease of the grapevine yellows complex, is associated with 'Candidatus Phytoplasma solani' and transmitted to grapevines in open fields by the cixiids Hyalesthes obsoletus and Reptalus panzeri. In vine-growing areas where the population density of these vectors is low within the vineyard, the occurrence of bois noir implies the existence of alternative vectors. The aim of this study was to identify alternative vectors through screening of the Auchenorrhyncha community, phytoplasma typing by stamp gene sequence analyses, and transmission trials. During field activities, conducted in Northern Italy in a vineyard where the bois noir incidence was extremely high, nine potential alternative insect vectors were identified according to high abundance in the vineyard agro-ecosystem, high infection rate, and harbouring phytoplasma strains characterized by stamp gene sequence variants found also in symptomatic grapevines. Transmission trials coupled with molecular analyses showed that at least eight species (Aphrodes makarovi, Dicranotropis hamata, Dictyophara europaea, Euscelis incisus, Euscelidius variegatus, Laodelphax striatella, Philaenus spumarius, and Psammotettix alienus/confinis) are alternative vectors of 'Candidatus Phytoplasma solani' to grapevines. These novel findings highlight that bois noir epidemiology in vineyard agro-ecosystems is more complex than previously known, opening up new perspectives in the disease management.


Asunto(s)
Insectos Vectores/fisiología , Phytoplasma/fisiología , Vitis/microbiología , Animales , Ecosistema , Insectos Vectores/genética , Filogenia , Phytoplasma/genética , Enfermedades de las Plantas/microbiología , Análisis de Secuencia de ADN
17.
Front Microbiol ; 10: 1409, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31293547

RESUMEN

Plants develop in a microbe-rich environment and must interact with a plethora of microorganisms, both pathogenic and beneficial. Indeed, such is the case of Pseudomonas, and its model organisms P. fluorescens and P. syringae, a bacterial genus that has received particular attention because of its beneficial effect on plants and its pathogenic strains. The present study aims to compare plant-beneficial and pathogenic strains belonging to the P. syringae species to get new insights into the distinction between the two types of plant-microbe interactions. In assays carried out under greenhouse conditions, P. syringae pv. syringae strain 260-02 was shown to promote plant-growth and to exert biocontrol of P. syringae pv. tomato strain DC3000, against the Botrytis cinerea fungus and the Cymbidium Ringspot Virus. This P. syringae strain also had a distinct volatile emission profile, as well as a different plant-colonization pattern, visualized by confocal microscopy and gfp labeled strains, compared to strain DC3000. Despite the different behavior, the P. syringae strain 260-02 showed great similarity to pathogenic strains at a genomic level. However, genome analyses highlighted a few differences that form the basis for the following hypotheses regarding strain 260-02. P. syringae strain 260-02: (i) possesses non-functional virulence genes, like the mangotoxin-producing operon Mbo; (ii) has different regulation pathways, suggested by the difference in the autoinducer system and the lack of a virulence activator gene; (iii) has genes encoding DNA methylases different from those found in other P. syringae strains, suggested by the presence of horizontal-gene-transfer-obtained methylases that could affect gene expression.

18.
Sci Rep ; 8(1): 12523, 2018 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-30131589

RESUMEN

The Eurasian grapevine (Vitis vinifera), an Old World species now cultivated worldwide for high-quality wine production, is extremely susceptible to the agent of downy mildew, Plasmopara viticola. The cultivation of resistant V. vinifera varieties would be a sustainable way to reduce the damage caused by the pathogen and the impact of disease management, which involves the economic, health and environmental costs of frequent fungicide application. We report the finding of unique downy mildew resistance traits in a winemaking cultivar from the domestication center of V. vinifera, and characterize the expression of a range of genes associated with the resistance mechanism. Based on comparative experimental inoculations, confocal microscopy and transcriptomics analyses, our study shows that V. vinifera cv. Mgaloblishvili, native to Georgia (South Caucasus), exhibits unique resistance traits against P. viticola. Its defense response, leading to a limitation of P. viticola growth and sporulation, is determined by the overexpression of genes related to pathogen recognition, the ethylene signaling pathway, synthesis of antimicrobial compounds and enzymes, and the development of structural barriers. The unique resistant traits found in Mgaloblishvili highlight the presence of a rare defense system in V. vinifera against P. viticola which promises fresh opportunities for grapevine genetic improvement.


Asunto(s)
Resistencia a la Enfermedad , Peronospora/crecimiento & desarrollo , Proteínas de Plantas/genética , Vitis/crecimiento & desarrollo , Etilenos/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Patógeno , Microscopía Confocal , Peronospora/patogenicidad , Sitios de Carácter Cuantitativo , Transducción de Señal , Regulación hacia Arriba , Vitis/clasificación , Vitis/genética , Vitis/microbiología
19.
Int J Mol Sci ; 19(6)2018 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-29925799

RESUMEN

Citrus Decline Disease was recently reported to affect several citrus species in Iran when grafted on a local rootstock variety, Bakraee. Preliminary studies found "Candidatus Phytoplasma aurantifoliae" and "Candidatus Liberibacter asiaticus" as putative etiological agents, but were not ultimately able to determine which one, or if an association of both, were causing the disease. The current study has the aim of characterizing the microbiota of citrus plants that are either asymptomatic, showing early symptoms, or showing late symptoms through amplification of the V1­V3 region of 16S rRNA gene using an Illumina sequencer in order to (i) clarify the etiology of the disease, and (ii) describe the microbiota associated to different symptom stages. Our results suggest that liberibacter may be the main pathogen causing Citrus Decline Disease, but cannot rule out the possibility of phytoplasma being involved as well. The characterization of microbiota shows that the leaves show only two kinds of communities, either symptomatic or asymptomatic, while roots show clear distinction between early and late symptoms. These results could lead to the identification of bacteria that are related to successful plant defense response and, therefore, to immunity to the Citrus Decline Disease.


Asunto(s)
Citrus sinensis/microbiología , ADN Bacteriano/genética , Microbiota/genética , Enfermedades de las Plantas/microbiología , Rhizobiaceae/genética , Irán , Phytoplasma/genética , Hojas de la Planta/microbiología , Raíces de Plantas/microbiología , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
20.
PLoS One ; 13(1): e0189993, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29351296

RESUMEN

Bacteria of the Paenibacillus genus are becoming important in many fields of science, including agriculture, for their positive effects on the health of plants. However, there are little information available on this genus compared to other bacteria (such as Bacillus or Pseudomonas), especially when considering genomic information. Sequencing the genomes of plant-beneficial bacteria is a crucial step to identify the genetic elements underlying the adaptation to life inside a plant host and, in particular, which of these features determine the differences between a helpful microorganism and a pathogenic one. In this study, we have characterized the genome of Paenibacillus pasadenensis, strain R16, recently investigated for its antifungal activities and plant-associated features. An hybrid assembly approach was used integrating the very precise reads obtained by Illumina technology and long fragments acquired with Oxford Nanopore Technology (ONT) sequencing. De novo genome assembly based solely on Illumina reads generated a relatively fragmented assembly of 5.72 Mbp in 99 ungapped sequences with an N50 length of 544 Kbp; hybrid assembly, integrating Illumina and ONT reads, improved the assembly quality, generating a genome of 5.75 Mbp, organized in 6 contigs with an N50 length of 3.4 Mbp. Annotation of the latter genome identified 4987 coding sequences, of which 1610 are hypothetical proteins. Enrichment analysis identified pathways of particular interest for the endophyte biology, including the chitin-utilization pathway and the incomplete siderophore pathway which hints at siderophore parasitism. In addition the analysis led to the identification of genes for the production of terpenes, as for example farnesol, that was hypothesized as the main antifungal molecule produced by the strain. The functional analysis on the genome confirmed several plant-associated, plant-growth promotion, and biocontrol traits of strain R16, thus adding insights in the genetic bases of these complex features, and of the Paenibacillus genus in general.


Asunto(s)
Endófitos/genética , Hongos/patogenicidad , Genoma Bacteriano , Paenibacillus/genética , Plantas/microbiología , Amino Azúcares/metabolismo , Metabolismo de los Hidratos de Carbono , ADN Bacteriano/genética , ADN Bacteriano/aislamiento & purificación , Endófitos/metabolismo , Endófitos/fisiología , Secuenciación de Nucleótidos de Alto Rendimiento , Compuestos Orgánicos/metabolismo , Paenibacillus/metabolismo , Paenibacillus/fisiología , Desarrollo de la Planta , Sideróforos/biosíntesis , Esporas Bacterianas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...