Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 214
Filtrar
1.
Ann Surg ; 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39087328

RESUMEN

OBJECTIVE: To investigate the spermidine pathway capability to predict patients at risk for tumor recurrence following colorectal cancer (CRC) surgery. SUMMARY BACKGROUND DATA: Recurrence rates after CRC surgery remain about 20%, despite an optimal technique and adjuvant therapy when necessary. Identification of risk biomarkers of recurrence is an unmet need. The spermidine pathway is indispensable for cell proliferation and differentiation, and is suggested to accelerate tumor spread. METHODS: Prospective cohort study of patients undergoing CRC surgery from 2015 to 2018. Plasma samples were collected before surgery and on postoperative day 4, and the spermidine pathway was assessed through mass spectrometry. Oncological outcomes were registered. RESULTS: 146 patients were included and 24 (16.4%) developed tumor recurrence. Higher levels of preoperative spermidine pathway components (spermidine, spermine, spermidine synthase enzyme, and spermine/arginine balance) were positively associated with recurrence. Surgery promoted a decrease in these pathway elements. The greater the decline was, the lower the risk of recurrence. Preoperative spermidine over the cut-off 0.198 µM displayed a 4.69-fold higher risk of recurrence. The spermine synthase enzyme behaved in the opposite direction. CONCLUSIONS: The spermidine pathway is associated with tumor recurrence following CRC surgery and, after confirmation in larger cohorts, could be translated as a risk biomarker of recurrence into clinical practice.

2.
J Med Virol ; 96(7): e29752, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38949191

RESUMEN

Antiviral signaling, immune response and cell metabolism are dysregulated by SARS-CoV-2, the causative agent of COVID-19. Here, we show that SARS-CoV-2 accessory proteins ORF3a, ORF9b, ORF9c and ORF10 induce a significant mitochondrial and metabolic reprogramming in A549 lung epithelial cells. While ORF9b, ORF9c and ORF10 induced largely overlapping transcriptomes, ORF3a induced a distinct transcriptome, including the downregulation of numerous genes with critical roles in mitochondrial function and morphology. On the other hand, all four ORFs altered mitochondrial dynamics and function, but only ORF3a and ORF9c induced a marked alteration in mitochondrial cristae structure. Genome-Scale Metabolic Models identified both metabolic flux reprogramming features both shared across all accessory proteins and specific for each accessory protein. Notably, a downregulated amino acid metabolism was observed in ORF9b, ORF9c and ORF10, while an upregulated lipid metabolism was distinctly induced by ORF3a. These findings reveal metabolic dependencies and vulnerabilities prompted by SARS-CoV-2 accessory proteins that may be exploited to identify new targets for intervention.


Asunto(s)
COVID-19 , Mitocondrias , SARS-CoV-2 , Proteínas Virales , Humanos , Células A549 , COVID-19/metabolismo , COVID-19/virología , COVID-19/patología , Mitocondrias/metabolismo , Sistemas de Lectura Abierta , SARS-CoV-2/genética , Transcriptoma , Proteínas Virales/genética , Proteínas Virales/metabolismo , Proteínas Reguladoras y Accesorias Virales/metabolismo , Proteínas Reguladoras y Accesorias Virales/genética , Proteínas Viroporinas/metabolismo
3.
Dalton Trans ; 53(31): 13030-13043, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39028273

RESUMEN

The synthesis of three novel [C,N,N'] Pt(IV) cyclometallated compounds containing hydroxo, dichloroacetato or trifluoroacetato axial ligands is reported. Compound [PtCl(OH)2{(CH3)2N(CH2)2NCH(4-FC6H3)}] (3) was prepared by the oxidative addition of hydrogen peroxide to [C,N,N'] Pt(II) cyclometallated compound [PtCl{(CH3)2N(CH2)2NCH(4-FC6H3)}] (1) and further the reaction of compound 3 with dichloroacetate or trifluoroacetate anhydrides led to the formation of the corresponding compounds [PtCl(CHCl2COO)2{(CH3)2N(CH2)2NCH(4-FC6H3)}] (4) and [PtCl(CF3COO)2{(CH3)2N(CH2)2NCH(4-FC6H3)}] (5). The properties of the new compounds along with those of the compound [PtCl3{(CH3)2N(CH2)2NCH(4-FC6H3)}] (2), including stability in aqueous media, reduction potential using cyclic voltammetry, cytotoxic activity against the HCT116 CRC cell line, DNA interaction, topoisomerase I and cathepsin inhibition, and computational studies involving reduction of the Pt(IV) compounds and molecular docking studies, are presented. Interestingly, the antiproliferative activity of these compounds against the HCT116 CRC cell line, which is in all cases higher than that of cisplatin, follows the same trend as the reduction potentials so that the most easily reduced compound 2 is the most potent. In contrast, according to the electrophoretic mobility and molecular docking studies, the efficacy of these compounds in binding to DNA is not related to their cytotoxicity. The most active compound 2 does not modify the DNA electrophoretic mobility while the less potent compound 3 is the most efficient in binding to DNA. Although compounds 2 and 3 have only a slight effect on cell cycle distribution and apoptosis induction, generation of ROS to a higher extent for the most easily reduced compound 2 was observed.


Asunto(s)
Antineoplásicos , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Ligandos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , ADN/metabolismo , ADN/química , Compuestos Organoplatinos/farmacología , Compuestos Organoplatinos/química , Compuestos Organoplatinos/síntesis química , Apoptosis/efectos de los fármacos , Relación Estructura-Actividad , Simulación del Acoplamiento Molecular , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Complejos de Coordinación/síntesis química , Estructura Molecular
4.
Molecules ; 29(2)2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38257245

RESUMEN

Trabectedin (TRB) and Lurbinectedin (LUR) are alkaloid compounds originally isolated from Ecteinascidia turbinata with proven antitumoral activity. Both molecules are structural analogues that differ on the tetrahydroisoquinoline moiety of the C subunit in TRB, which is replaced by a tetrahydro-ß-carboline in LUR. TRB is indicated for patients with relapsed ovarian cancer in combination with pegylated liposomal doxorubicin, as well as for advanced soft tissue sarcoma in adults in monotherapy. LUR was approved by the FDA in 2020 to treat metastatic small cell lung cancer. Herein, we systematically summarise the origin and structure of TRB and LUR, as well as the molecular mechanisms that they trigger to induce cell death in tumoral cells and supporting stroma cells of the tumoral microenvironment, and how these compounds regulate immune cell function and fate. Finally, the novel therapeutic venues that are currently under exploration, in combination with a plethora of different immunotherapeutic strategies or specific molecular-targeted inhibitors, are reviewed, with particular emphasis on the usage of immune checkpoint inhibitors, or other bioactive molecules that have shown synergistic effects in terms of tumour regression and ablation. These approaches intend to tackle the complexity of managing cancer patients in the context of precision medicine and the application of tailor-made strategies aiming at the reduction of undesired side effects.


Asunto(s)
Carbolinas , Compuestos Heterocíclicos de 4 o más Anillos , Neoplasias Ováricas , Microambiente Tumoral , Adulto , Femenino , Humanos , Trabectedina , Recurrencia Local de Neoplasia
5.
Int J Surg ; 110(3): 1493-1501, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38116682

RESUMEN

BACKGROUND: Early detection of postoperative complications after colorectal cancer (CRC) surgery is associated with improved outcomes. The aim was to investigate early metabolomics signatures capable to detect patients at risk for severe postoperative complications after CRC surgery. MATERIALS AND METHODS: Prospective cohort study of patients undergoing CRC surgery from 2015 to 2018. Plasma samples were collected before and after surgery, and analyzed by mass spectrometry obtaining 188 metabolites and 21 ratios. Postoperative complications were registered with Clavien-Dindo Classification and Comprehensive Complication Index. RESULTS: One hundred forty-six patients were included. Surgery substantially modified metabolome and metabolic changes after surgery were quantitatively associated with the severity of postoperative complications. The strongest positive relationship with both Clavien-Dindo and Comprehensive Complication Index (ß=4.09 and 63.05, P <0.001) corresponded to kynurenine/tryptophan, against an inverse relationship with lysophosphatidylcholines (LPCs) and phosphatidylcholines (PCs). Patients with LPC18:2/PCa36:2 below the cut-off 0.084 µM/µM resulted in a sevenfold higher risk of major complications (OR=7.38, 95% CI: 2.82-21.25, P <0.001), while kynurenine/tryptophan above 0.067 µM/µM a ninefold (OR=9.35, 95% CI: 3.03-32.66, P <0.001). Hexadecanoylcarnitine below 0.093 µM displayed a 12-fold higher risk of anastomotic leakage-related complications (OR=11.99, 95% CI: 2.62-80.79, P =0.004). CONCLUSION: Surgery-induced phospholipids and amino acid dysregulation is associated with the severity of postoperative complications after CRC surgery, including anastomotic leakage-related outcomes. The authors provide quantitative insight on metabolic markers, measuring vulnerability to postoperative morbidity that might help guide early decision-making and improve surgical outcomes.


Asunto(s)
Fuga Anastomótica , Neoplasias Colorrectales , Humanos , Estudios Prospectivos , Triptófano , Quinurenina , Complicaciones Posoperatorias/diagnóstico , Complicaciones Posoperatorias/etiología , Neoplasias Colorrectales/cirugía , Neoplasias Colorrectales/complicaciones , Estudios Retrospectivos
6.
Fluids Barriers CNS ; 20(1): 90, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38049870

RESUMEN

BACKGROUND: The lack of accessible and informative biomarkers results in a delayed diagnosis of Parkinson's disease (PD), whose symptoms appear when a significant number of dopaminergic neurons have already disappeared. The retina, a historically overlooked part of the central nervous system (CNS), has gained recent attention. It has been discovered that the composition of cerebrospinal fluid influences the aqueous humor composition through microfluidic circulation. In addition, alterations found in the brain of patients with PD have a correlate in the retina. This new paradigm highlights the potential of the aqueous humor as a sample for identifying differentially concentrated metabolites that could, eventually, become biomarkers if also found altered in blood or CSF of patients. In this research we aim at analyzing the composition of the aqueous humor from healthy controls and PD patients. METHODS: A targeted metabolomics approach with concentration determination by mass spectrometry was used. Statistical methods including principal component analysis and linear discriminants were used to select differentially concentrated metabolites that allow distinguishing patients from controls. RESULTS: In this first metabolomics study in the aqueous humor of PD patients, elevated levels of 16 compounds were found; molecules differentially concentrated grouped into biogenic amines, amino acids, and acylcarnitines. A biogenic amine, putrescine, alone could be a metabolite capable of differentiating between PD and control samples. The altered levels of the metabolites were correlated, suggesting that the elevations stem from a common mechanism involving arginine metabolism. CONCLUSIONS: A combination of three metabolites, putrescine, tyrosine, and carnitine was able to correctly classify healthy participants from PD patients. Altered metabolite levels suggest altered arginine metabolism. The pattern of metabolomic disturbances was not due to the levodopa-based dopamine replacement medication because one of the patients was not yet taking levodopa but a dopamine receptor agonist.


Asunto(s)
Enfermedad de Parkinson , Humanos , Levodopa/metabolismo , Humor Acuoso/metabolismo , Putrescina/metabolismo , Biomarcadores/líquido cefalorraquídeo , Arginina/metabolismo
7.
Elife ; 122023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38014932

RESUMEN

Compelling evidence has accumulated on the role of oxidative stress on the endothelial cell (EC) dysfunction in acute coronary syndrome. Unveiling the underlying metabolic determinants has been hampered by the scarcity of appropriate cell models to address cell-autonomous mechanisms of EC dysfunction. We have generated endothelial cells derived from thrombectomy specimens from patients affected with acute myocardial infarction (AMI) and conducted phenotypical and metabolic characterizations. AMI-derived endothelial cells (AMIECs) display impaired growth, migration, and tubulogenesis. Metabolically, AMIECs displayed augmented ROS and glutathione intracellular content, with a diminished glucose consumption coupled to high lactate production. In AMIECs, while PFKFB3 protein levels of were downregulated, PFKFB4 levels were upregulated, suggesting a shunting of glycolysis towards the pentose phosphate pathway, supported by upregulation of G6PD. Furthermore, the glutaminolytic enzyme GLS was upregulated in AMIECs, providing an explanation for the increase in glutathione content. Finally, AMIECs displayed a significantly higher mitochondrial membrane potential than control ECs, which, together with high ROS levels, suggests a coupled mitochondrial activity. We suggest that high mitochondrial proton coupling underlies the high production of ROS, balanced by PPP- and glutaminolysis-driven synthesis of glutathione, as a primary, cell-autonomous abnormality driving EC dysfunction in AMI.


Asunto(s)
Células Endoteliales , Infarto del Miocardio , Humanos , Especies Reactivas de Oxígeno/metabolismo , Células Endoteliales/metabolismo , Reprogramación Metabólica , Estrés Oxidativo , Glucólisis , Glutatión/metabolismo , Fosfofructoquinasa-2/metabolismo
8.
Curr Opin Chem Biol ; 77: 102401, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37806262

RESUMEN

Current standard-of-care for metastatic colorectal cancer patients includes chemotherapy and anti-angiogenic or anti-epidermal growth factor receptor for microsatellite stable tumors and pembrolizumab for microsatellite instable tumors. However, despite the available therapies, the prognosis remains poor. In recent years, new drugs combined with immune checkpoint inhibitors have been tested in microsatellite stable metastatic colorectal cancer patients, but the benefit was modest. Here, we review the metabolic interactions between the immune microenvironment and cancer cells. More specifically, we highlight potential correlatives of tumor immune and metabolic features with transcriptomic classifications such as the Consensus Molecular Subtype. Finally, we discuss the unmet need of immune-metabolic signatures and the value of a new signature (IMMETCOLS) for guiding new strategies in metastatic colorectal cancer. We conclude that the field is ready to propose customized strategies for modifying metabolism and improving immunotherapy and targeted therapy efficacy.


Asunto(s)
Neoplasias Colorrectales , Humanos , Neoplasias Colorrectales/tratamiento farmacológico , Inmunoterapia , Microambiente Tumoral
9.
Front Immunol ; 14: 1211068, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37675104

RESUMEN

In recent years, the central role of cell bioenergetics in regulating immune cell function and fate has been recognized, giving rise to the interest in immunometabolism, an area of research focused on the interaction between metabolic regulation and immune function. Thus, early metabolic changes associated with the polarization of macrophages into pro-inflammatory or pro-resolving cells under different stimuli have been characterized. Tumor-associated macrophages are among the most abundant cells in the tumor microenvironment; however, it exists an unmet need to study the effect of chemotherapeutics on macrophage immunometabolism. Here, we use a systems biology approach that integrates transcriptomics and metabolomics to unveil the immunometabolic effects of trabectedin (TRB) and lurbinectedin (LUR), two DNA-binding agents with proven antitumor activity. Our results show that TRB and LUR activate human macrophages toward a pro-inflammatory phenotype by inducing a specific metabolic rewiring program that includes ROS production, changes in the mitochondrial inner membrane potential, increased pentose phosphate pathway, lactate release, tricarboxylic acids (TCA) cycle, serine and methylglyoxal pathways in human macrophages. Glutamine, aspartate, histidine, and proline intracellular levels are also decreased, whereas oxygen consumption is reduced. The observed immunometabolic changes explain additional antitumor activities of these compounds and open new avenues to design therapeutic interventions that specifically target the immunometabolic landscape in the treatment of cancer.


Asunto(s)
Neoplasias , Humanos , Trabectedina/farmacología , Macrófagos , Ácido Láctico , Microambiente Tumoral
10.
Int J Mol Sci ; 24(16)2023 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-37628936

RESUMEN

This study aimed to assess the relationship between age-related changes in Neurofilament Light Chain (NFL), a marker of neuronal function, and various factors including muscle function, body composition, and metabolomic markers. The study included 40 participants, aged 20 to 85 years. NFL levels were measured, and muscle function, body composition, and metabolomic markers were assessed. NFL levels increased significantly with age, particularly in men. Negative correlations were found between NFL levels and measures of muscle function, such as grip strength, walking speed, and chair test performance, indicating a decline in muscle performance with increasing NFL. These associations were more pronounced in men. NFL levels also negatively correlated with muscle quality in men, as measured by 50 kHz phase angle. In terms of body composition, NFL was positively correlated with markers of fat mass and negatively correlated with markers of muscle mass, predominantly in men. Metabolomic analysis revealed significant associations between NFL levels and specific metabolites, with gender-dependent relationships observed. This study provides insights into the relationship between circulating serum NFL, muscle function, and aging. Our findings hint at circulating NFL as a potential early marker of age-associated neurodegenerative processes, especially in men.


Asunto(s)
Composición Corporal , Filamentos Intermedios , Masculino , Humanos , Femenino , Músculos , Envejecimiento , Fuerza de la Mano
11.
Biochem Soc Trans ; 51(4): 1429-1436, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37449892

RESUMEN

Macrophages are essential components of the innate immune system that play both homeostatic roles in healthy organs, and host defence functions against pathogens after tissue injury. To accomplish their physiological role, macrophages display different profiles of gene expression, immune function, and metabolic phenotypes that allow these cells to participate in different steps of the inflammatory reaction, from the initiation to the resolution phase. In addition, significant differences exist in the phenotype of macrophages depending on the tissue in which they are present and on the mammalian species. From a metabolic point of view, macrophages are essentially glycolytic cells; however, their metabolic fluxes are dependent on the functional polarisation of these cells. This metabolic and cellular plasticity offers the possibility to interfere with the activity of macrophages to avoid harmful effects due to persistent activation or the release of molecules that delay tissue recovery after injury.


Asunto(s)
Inflamación , Macrófagos , Humanos , Homeostasis , Inflamación/metabolismo , Activación de Macrófagos , Macrófagos/metabolismo , Fenotipo
12.
Biosystems ; 231: 104984, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37506820

RESUMEN

Metabolic Control Analysis (MCA) marked a turning point in understanding the design principles of metabolic network control by establishing control coefficients as a means to quantify the degree of control that an enzyme exerts on flux or metabolite concentrations. MCA has demonstrated that control of metabolic pathways is distributed among many enzymes rather than depending on a single rate-limiting step. MCA also proved that this distribution depends not only on the stoichiometric structure of the network but also on other kinetic determinants, such as the degree of saturation of the enzyme active site, the distance to thermodynamic equilibrium, and metabolite feedback regulatory loops. Consequently, predicting the alterations that occur during metabolic adaptation in response to strong changes involving a redistribution in such control distribution can be challenging. Here, using the framework provided by MCA, we illustrate how control distribution in a metabolic pathway/network depends on enzyme kinetic determinants and to what extent the redistribution of control affects our predictions on candidate enzymes suitable as targets for small molecule inhibition in the drug discovery process. Our results uncover that kinetic determinants can lead to unexpected control distribution and outcomes that cannot be predicted solely from stoichiometric determinants. We also unveil that the inference of key enzyme-drivers of an observed metabolic adaptation can be dramatically improved using mean control coefficients and ruling out those enzyme activities that are associated with low control coefficients. As the use of constraint-based stoichiometric genome-scale metabolic models (GSMMs) becomes increasingly prevalent for identifying genes/enzymes that could be potential drug targets, we anticipate that incorporating kinetic determinants and ruling out enzymes with low control coefficients into GSMM workflows will facilitate more accurate predictions and reveal novel therapeutic targets.


Asunto(s)
Redes y Vías Metabólicas , Modelos Biológicos , Redes y Vías Metabólicas/genética , Cinética , Descubrimiento de Drogas , Enzimas/genética , Enzimas/metabolismo
13.
Am J Obstet Gynecol ; 228(1): 78.e1-78.e13, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35868419

RESUMEN

BACKGROUND: Among women with preterm labor, those with intra-amniotic infection present the highest risk of early delivery and the most adverse outcomes. The identification of intra-amniotic infection requires amniocentesis, perceived as too invasive by women and physicians. Noninvasive methods for identifying intra-amniotic infection and/or early delivery are crucial to focus early efforts on high-risk preterm labor women while avoiding unnecessary interventions in low-risk preterm labor women. OBJECTIVE: This study modeled the best performing models, integrating biochemical data with clinical and ultrasound information to predict a composite outcome of intra-amniotic infection and/or spontaneous delivery within 7 days. STUDY DESIGN: From 2015 to 2020, data from a cohort of women, who underwent amniocentesis to rule in or rule out intra-amniotic infection or inflammation, admitted with a diagnosis of preterm labor at <34 weeks of gestation at the Hospital Clinic and Hospital Sant Joan de Déu, Barcelona, Spain, were used. At admission, transvaginal ultrasound was performed, and maternal blood and vaginal samples were collected. Using high-dimensional biology, vaginal proteins (using multiplex immunoassay), amino acids (using high-performance liquid chromatography), and bacteria (using 16S ribosomal RNA gene amplicon sequencing) were explored to predict the composite outcome. We selected ultrasound, maternal blood, and vaginal predictors that could be tested with rapid diagnostic techniques and developed prediction models employing machine learning that was applied in a validation cohort. RESULTS: A cohort of 288 women with preterm labor at <34 weeks of gestation, of which 103 (35%) had a composite outcome of intra-amniotic infection and/or spontaneous delivery within 7 days, were included in this study. The sample was divided into derivation (n=116) and validation (n=172) cohorts. Of note, 4 prediction models were proposed, including ultrasound transvaginal cervical length, maternal C-reactive protein, vaginal interleukin 6 (using an automated immunoanalyzer), vaginal pH (using a pH meter), vaginal lactic acid (using a reflectometer), and vaginal Lactobacillus genus (using quantitative polymerase chain reaction), with areas under the receiving operating characteristic curve ranging from 82.2% (95% confidence interval, ±3.1%) to 85.2% (95% confidence interval, ±3.1%), sensitivities ranging from 76.1% to 85.9%, and specificities ranging from 75.2% to 85.1%. CONCLUSION: The study results have provided proof of principle of how noninvasive methods suitable for point-of-care systems can select high-risk cases among women with preterm labor and might substantially aid in clinical management and outcomes while improving the use of resources and patient experience.


Asunto(s)
Corioamnionitis , Trabajo de Parto Prematuro , Embarazo , Recién Nacido , Femenino , Humanos , Líquido Amniótico/microbiología , Corioamnionitis/microbiología , Trabajo de Parto Prematuro/diagnóstico , Amniocentesis/métodos , Inflamación/metabolismo
14.
Cancer Immunol Immunother ; 72(4): 827-840, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36083313

RESUMEN

BACKGROUND: Immune check-point blockade (ICB) has shown clinical benefit in mismatch repair-deficient/microsatellite instability high metastatic colorectal cancer (mCRC) but not in mismatch repair-proficient/microsatellite stable patients. Cancer vaccines with autologous dendritic cells (ADC) could be a complementary therapeutic approach to ICB as this combination has the potential to achieve synergistic effects. METHODS: This was a Phase I/II multicentric study with translational sub-studies, to evaluate the safety, pharmacodynamics and anti-tumor effects of Avelumab plus ADC vaccine in heavily pre-treated MSS mCRC patients. Primary objective was to determine the maximum tolerated dose and the efficacy of the combination. The primary end-point was 40% progression-free survival at 6 months with a 2 Simon Stage. RESULTS: A total of 28 patients were screened and 19 pts were included. Combined therapy was safe and well tolerated. An interim analysis (Simon design first-stage) recommended early termination because only 2/19 (11%) patients were disease free at 6 months. Median PFS was 3.1 months [2.1-5.3 months] and overall survival was 12.2 months [3.2-23.2 months]. Stimulation of immune system was observed in vitro but not clinically. The evaluation of basal RNA-seq noted significant changes between pre and post-therapy liver biopsies related to lipid metabolism and transport, inflammation and oxidative stress pathways. CONCLUSIONS: The combination of Avelumab plus ADC vaccine is safe and well tolerated but exhibited modest clinical activity. Our study describes, for the first-time, a de novo post-therapy metabolic rewiring, that could represent novel immunotherapy-induced tumor vulnerabilities.


Asunto(s)
Vacunas contra el Cáncer , Neoplasias del Colon , Neoplasias Colorrectales , Neoplasias del Recto , Humanos , Vacunas contra el Cáncer/uso terapéutico , Reparación de la Incompatibilidad de ADN , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Recto/tratamiento farmacológico , Células Dendríticas , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico
15.
Handb Exp Pharmacol ; 277: 181-207, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36456700

RESUMEN

Metabolomics has long been used in a biomedical context. The most typical samples are body fluids in which small molecules can be detected and quantified using technologies such as Nuclear Magnetic Resonance (NMR) and Mass Spectrometry (MS). Many studies, in particular in the wider field of cancer research, are based on cellular models. Different cancer cells can have vastly different ways of regulating metabolism and responses to drug treatments depend on specific metabolic mechanisms which are often cell type specific. This has led to a series of publications using metabolomics to study metabolic mechanisms. Cell-based metabolomics has specific requirements and allows for interesting approaches where metabolism is followed in real-time. Here applications of metabolomics in cell biology have been reviewed, providing insight into specific technologies used and showing exemplary case studies with an emphasis towards applications which help to understand drug mechanisms.


Asunto(s)
Imagen por Resonancia Magnética , Metabolómica , Humanos , Metabolómica/métodos , Espectrometría de Masas/métodos , Espectroscopía de Resonancia Magnética/métodos
16.
Int J Mol Sci ; 23(21)2022 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-36361545

RESUMEN

The composition of the aqueous humor of patients with type 2 diabetes is relevant to understanding the underlying causes of eye-related comorbidities. Information on the composition of aqueous humor in healthy subjects is limited due to the lack of adequate controls. To carry out a metabolomics study, 31 samples of aqueous humor from healthy subjects without ocular pathology, submitted to refractive surgery and seven samples from patients with type 2 diabetes without signs of ocular pathology related to diabetes were used. The level of 25 molecules was significantly (p < 0.001) altered in the aqueous humor of the patient group. The concentration of a single molecule, N-acetylornithine, makes it possible to discriminate between control and diabetes (sensitivity and specificity equal to 1). In addition, receptor operating characteristic curve and principal component analysis for the above-mentioned six molecules yielded significantly (p < 0.001) altered in the aqueous humor of the patient group. In addition, receptor operating characteristic curve and principal component analysis for six compounds yielded cut-off values and remarkable sensitivity, specificity, and segregation ability. The altered level of N-acetylornithine may be due to an increased amount of acetate in diabetes. It is of interest to further investigate whether this alteration is related to the pathogenesis of the disease. The increase in the amino form of pyruvate, alanine, in diabetes is also relevant because it could be a means of reducing the formation of lactate from pyruvate.


Asunto(s)
Humor Acuoso , Diabetes Mellitus Tipo 2 , Humanos , Metabolómica , Aminas Biogénicas , Piruvatos
17.
Front Immunol ; 13: 926304, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36119118

RESUMEN

Existing immune signatures and tumor mutational burden have only modest predictive capacity for the efficacy of immune check point inhibitors. In this study, we developed an immune-metabolic signature suitable for personalized ICI therapies. A classifier using an immune-metabolic signature (IMMETCOLS) was developed on a training set of 77 metastatic colorectal cancer (mCRC) samples and validated on 4,200 tumors from the TCGA database belonging to 11 types. Here, we reveal that the IMMETCOLS signature classifies tumors into three distinct immune-metabolic clusters. Cluster 1 displays markers of enhanced glycolisis, hexosamine byosinthesis and epithelial-to-mesenchymal transition. On multivariate analysis, cluster 1 tumors were enriched in pro-immune signature but not in immunophenoscore and were associated with the poorest median survival. Its predicted tumor metabolic features suggest an acidic-lactate-rich tumor microenvironment (TME) geared to an immunosuppressive setting, enriched in fibroblasts. Cluster 2 displays features of gluconeogenesis ability, which is needed for glucose-independent survival and preferential use of alternative carbon sources, including glutamine and lipid uptake/ß-oxidation. Its metabolic features suggest a hypoxic and hypoglycemic TME, associated with poor tumor-associated antigen presentation. Finally, cluster 3 is highly glycolytic but also has a solid mitochondrial function, with concomitant upregulation of glutamine and essential amino acid transporters and the pentose phosphate pathway leading to glucose exhaustion in the TME and immunosuppression. Together, these findings suggest that the IMMETCOLS signature provides a classifier of tumors from diverse origins, yielding three clusters with distinct immune-metabolic profiles, representing a new predictive tool for patient selection for specific immune-metabolic therapeutic approaches.


Asunto(s)
Glutamina , Neoplasias , Carbono , Glucosa , Hexosaminas , Humanos , Hipoglucemiantes , Lactatos , Lípidos , Microambiente Tumoral/genética
18.
Front Med (Lausanne) ; 9: 935084, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35935793

RESUMEN

The composition of the aqueous humor of patients with glaucoma is relevant to understand the underlying causes of the pathology. Information on the concentration of metabolites and small molecules in the aqueous humor of healthy subjects is limited. Among the causes of the limitations is the lack of healthy controls since, until recently, they were not surgically intervened; therefore, the aqueous humor of patients operated for cataract was used as a reference. Sixteen aqueous humor samples from healthy subjects undergoing refractive surgery and eight samples from glaucoma patients were used to assess the concentration of 188 compounds using chromatography and mass spectrometry. The concentration of 80 of the 188 was found to be reliable, allowing comparison of data from the two groups (glaucoma and control). The pattern found in the controls is similar to, but not the same as, that reported using samples from "controls" undergoing cataract surgery. Comparing data from glaucoma patients and healthy subjects, 57 of the 80 compounds were significantly (p < 0.05) altered in the aqueous humor. Kynurenine and glutamine, but not glutamate, were significantly increased in the glaucoma samples. Furthermore, 10 compounds were selected considering a statistical score of p < 0.0001 and the degree of change of more than double or less than half. The level of C10 (decanoyl)-carnitine decreased, while the concentration of spermidine and various acyl-carnitines and lysophosphatidylcholines increased in glaucoma. Principal component analysis showed complete segregation of controls and cases using the data for the 10 selected compounds. The receiver operating characteristic curve these 10 compounds and for glutamine allowed finding cut-off values and significant sensitivity and specificity scores. The concentration of small metabolites in the aqueous humor of glaucoma patients is altered even when they take medication and are well controlled. The imbalance affects membrane components, especially those of the mitochondria, suggesting that mitochondrial abnormalities are a cause or consequence of glaucoma. The increase in glutamine in glaucoma is also relevant because it could be a means of keeping the concentration of glutamate under control, thus avoiding its potential to induce the death of neurons and retinal cells. Equally notable was the increase in kynurenine, which is essential in the metabolism of nicotine adenine dinucleotides.

19.
Methods Mol Biol ; 2399: 123-149, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35604555

RESUMEN

Mitochondrial respiratory chain (RC) transforms the reductive power of NADH or FADH2 oxidation into a proton gradient between the matrix and cytosolic sides of the inner mitochondrial membrane, that ATP synthase uses to generate ATP. This process constitutes a bridge between carbohydrates' central metabolism and ATP-consuming cellular functions. Moreover, the RC is responsible for a large part of reactive oxygen species (ROS) generation that play signaling and oxidizing roles in cells. Mathematical methods and computational analysis are required to understand and predict the possible behavior of this metabolic system. Here we propose a software tool that helps to analyze individual steps of respiratory electron transport in their dynamics, thus deepening understanding of the mechanism of energy transformation and ROS generation in the RC. This software's core is a kinetic model of the RC represented by a system of ordinary differential equations (ODEs). This model enables the analysis of complex dynamic behavior of the RC, including multistationarity and oscillations. The proposed RC modeling method can be applied to study respiration and ROS generation in various organisms and naturally extended to explore carbohydrates' metabolism and linked metabolic processes.


Asunto(s)
Mitocondrias , Programas Informáticos , Adenosina Trifosfato/metabolismo , Carbohidratos , Transporte de Electrón , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo
20.
Int J Mol Sci ; 23(7)2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35408935

RESUMEN

Increased expression of transketolase (TKT) and its isoform transketolase-like-1 (TKTL1) has been related to the malignant leukemia phenotype through promoting an increase in the non-oxidative branch of the pentose phosphate pathway (PPP). Recently, it has also been described that TKTL1 can have a role in survival under hypoxic conditions and in the acquisition of radio resistance. However, TKTL1's role in triggering metabolic reprogramming under hypoxia in leukemia cells has never been characterized. Using THP-1 AML cells, and by combining metabolomics and transcriptomics techniques, we characterized the impact of TKTL1 knockdown on the metabolic reprogramming triggered by hypoxia. Results demonstrated that TKTL1 knockdown results in a decrease in TKT, glucose-6-phosphate dehydrogenase (G6PD) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) activities and impairs the hypoxia-induced overexpression of G6PD and GAPDH, all having significant impacts on the redox capacity of NADPH- and NADH-related cells. Moreover, TKTL1 knockdown impedes hypoxia-induced transcription of genes encoding key enzymes and transporters involved in glucose, PPP and amino acid metabolism, rendering cells unable to switch to enhanced glycolysis under hypoxia. Altogether, our results show that TKTL1 plays a key role in the metabolic adaptation to hypoxia in THP-1 AML cells through modulation of G6PD and GAPDH activities, both regulating glucose/glutamine consumption and the transcriptomic overexpression of key players of PPP, glucose and amino acids metabolism.


Asunto(s)
Leucemia Mieloide Aguda , Transcetolasa , Glucosa/metabolismo , Glucosafosfato Deshidrogenasa/genética , Glucosafosfato Deshidrogenasa/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante) , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Humanos , Hipoxia , Vía de Pentosa Fosfato/genética , Transcetolasa/genética , Transcetolasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...