Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Physiol Genomics ; 56(10): 649-660, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39007510

RESUMEN

The prevalence of metabolic syndrome in cardiac diseases such as heart failure with preserved ejection fraction (HFpEF) prompts the scientific community to investigate its adverse effects on cardiac function and remodeling. However, the selection of a preclinical model of obesity-induced cardiac remodeling has proven more challenging with inconsistencies often found in very similar mouse models. Here, we investigated the implication of genetic background as well as diet composition to identify a suitable model of diet-induced cardiac alterations. C57Bl/6J and C57Bl/6N male mice were subjected to distinct obesogenic diets consisting of high-fat and moderate sucrose content (HF-S) or high-sucrose and moderate lipid content (F-HS) versus matching control diets. Five-month dietary intervention with obesogenic diets induced weight gain, adipocyte hypertrophy, and increased visceral and subcutaneous fat mass in both substrains. Obese mice showed similar impairment of glucose disposition and insulin tolerance, with both strains developing insulin resistance within 2 mo. However, echocardiographic follow-up and histological analysis confirmed that the HF-S diet increased cardiac hypertrophy, interstitial fibrosis, and left atrial area in the C57Bl/6J strain only. In contrast, the C57Bl/6N strain exhibited cardiac eccentric remodeling under control diets, possibly owing to a genetic mutation in the myosin light chain kinase 3 (Mylk3) gene, specific to this substrain, which was not further enhanced under obesogenic diets. Altogether, the present results highlight the importance of carefully selecting the suitable mouse strain and diets to model diet-induced cardiac remodeling. In this regard, C57Bl/6J mice develop significant cardiac remodeling in response to HF-S and seem to be a suitable model for cardiometabolic disease.NEW & NOTEWORTHY Metabolic syndrome is highly prevalent in cardiac pathologies. Underlying mechanisms have not been thoroughly investigated, owing to the lack of reliable preclinical model of diet-induced cardiac remodeling. Our work demonstrates that genetic variants in inbred strains influence the response to metabolic stress and identifies C57Bl/6J mice as a suitable model for cardiometabolic disease in response to high-fat diet. These findings reinforce the need to carefully select the mouse strain in relation to the imposed pathophysiologic stress.


Asunto(s)
Dieta Alta en Grasa , Ratones Endogámicos C57BL , Obesidad , Remodelación Ventricular , Animales , Masculino , Obesidad/patología , Dieta Alta en Grasa/efectos adversos , Ratones , Resistencia a la Insulina , Modelos Animales de Enfermedad
2.
Int J Mol Sci ; 23(12)2022 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-35742830

RESUMEN

The head and neck tumor microenvironment (TME) is highly infiltrated with macrophages. More specifically, tumor-associated macrophages (TAM/M2-like) are one of the most critical components associated with poor overall survival in head and neck cancers (HNC). Two extreme states of macrophage phenotypes are described as conducting pro-inflammatory/anti-tumoral (M1) or anti-inflammatory/pro-tumoral (M2) activities. Moreover, specific metabolic pathways as well as oxidative stress responses are tightly associated with their phenotypes and functions. Hence, due to their plasticity, targeting M2 macrophages to repolarize in the M1 phenotype would be a promising cancer treatment. In this context, we evaluated macrophage infiltration in 60 HNC patients and demonstrated the high infiltration of CD68+ cells that were mainly related to CD163+ M2 macrophages. We then optimized a polarization protocol from THP1 monocytes, validated by specific gene and protein expression levels. In addition, specific actors of glutamine pathway and oxidative stress were quantified to indicate the use of glutaminolysis by M2 and the production of reactive oxygen species by M1. Finally, we evaluated and confirmed the plasticity of our model using M1 activators to repolarize M2 in M1. Overall, our study provides a complete reversible polarization protocol allowing us to further evaluate various reprogramming effectors targeting glutaminolysis and/or oxidative stress in macrophages.


Asunto(s)
Neoplasias de Cabeza y Cuello , Macrófagos , Neoplasias de Cabeza y Cuello/patología , Humanos , Macrófagos/metabolismo , Fenotipo , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...