Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Int J Nanomedicine ; 19: 3513-3536, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38623081

RESUMEN

Purpose: Proliferative vitreoretinal diseases (PVDs) represent a heterogeneous group of pathologies characterized by the presence of retinal proliferative membranes, in whose development retinal pigment epithelium (RPE) is deeply involved. As the only effective treatment for PVDs at present is surgery, we aimed to investigate the potential therapeutic activity of Nutlin-3a, a small non-genotoxic inhibitor of the MDM2/p53 interaction, on ARPE-19 cell line and on human RPE primary cells, as in vitro models of RPE and, more importantly, to formulate and evaluate Nutlin-3a loaded liposomes designed for ophthalmic administration. Methods: Liposomes were produced using an innovative approach by a microfluidic device under selection of different conditions. Liposome size distribution was evaluated by photon correlation spectroscopy and centrifugal field flow fractionation, while the liposome structure was studied by transmission electron microscopy and Fourier-transform infrared spectroscopy. The Nutlin-3a entrapment capacity was evaluated by ultrafiltration and HPLC. Nutlin-3a biological effectiveness as a solution or loaded in liposomes was evaluated by viability, proliferation, apoptosis and migration assays and by morphological analysis. Results: The microfluidic formulative study enabled the selection of liposomes composed of phosphatidylcholine (PC) 5.4 or 8.2 mg/mL and 10% ethanol, characterized by roundish vesicular structures with 150-250 nm mean diameters. Particularly, liposomes based on the lower PC concentration were characterized by higher stability. Nutlin-3a was effectively encapsulated in liposomes and was able to induce a significant reduction of viability and migration in RPE cell models. Conclusion: Our results lay the basis for a possible use of liposomes for the ocular delivery of Nutlin-3a.


Asunto(s)
Oftalmopatías , Imidazoles , Liposomas , Piperazinas , Humanos , Liposomas/farmacología , Proteína p53 Supresora de Tumor/metabolismo , Línea Celular Tumoral , Microfluídica , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/farmacología , Apoptosis
2.
Int J Mol Sci ; 25(3)2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38338966

RESUMEN

Neurodegenerative diseases are an increasingly common group of diseases that occur late in life with a significant impact on personal, family, and economic life. Among these, Alzheimer's disease (AD) and Parkinson's disease (PD) are the major disorders that lead to mild to severe cognitive and physical impairment and dementia. Interestingly, those diseases may show onset of prodromal symptoms early after middle age. Commonly, the evaluation of these neurodegenerative diseases is based on the detection of biomarkers, where functional and structural magnetic resonance imaging (MRI) have shown a central role in revealing early or prodromal phases, although it can be expensive, time-consuming, and not always available. The aforementioned diseases have a common impact on the visual system due to the pathophysiological mechanisms shared between the eye and the brain. In Parkinson's disease, α-synuclein deposition in the retinal cells, as well as in dopaminergic neurons of the substantia nigra, alters the visual cortex and retinal function, resulting in modifications to the visual field. Similarly, the visual cortex is modified by the neurofibrillary tangles and neuritic amyloid ß plaques typically seen in the Alzheimer's disease brain, and this may reflect the accumulation of these biomarkers in the retina during the early stages of the disease, as seen in postmortem retinas of AD patients. In this light, the ophthalmic evaluation of retinal neurodegeneration could become a cost-effective method for the early diagnosis of those diseases, overcoming the limitations of functional and structural imaging of the deep brain. This analysis is commonly used in ophthalmic practice, and interest in it has risen in recent years. This review will discuss the relationship between Alzheimer's disease and Parkinson's disease with retinal degeneration, highlighting how retinal analysis may represent a noninvasive and straightforward method for the early diagnosis of these neurodegenerative diseases.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Persona de Mediana Edad , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/patología , Síntomas Prodrómicos , Enfermedades Neurodegenerativas/diagnóstico por imagen , Enfermedades Neurodegenerativas/patología , Retina/diagnóstico por imagen , Retina/patología , Biomarcadores
3.
Int J Mol Sci ; 24(18)2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37762377

RESUMEN

The recent attention to the risk of potential permanent eye damage triggered by ocular infections has been leading to a deeper investigation of the current antimicrobials. An antimicrobial agent used in ophthalmology should possess the following characteristics: a broad antimicrobial spectrum, prompt action even in the presence of organic matter, and nontoxicity. The objective of this study is to compare the antimicrobial efficacy of widely used ophthalmic antiseptics containing povidone-iodine, chlorhexidine, and liposomes containing ozonated sunflower oil. We determined the minimum inhibitory concentration (MIC) on various microbial strains: Staphylococcus aureus (ATCC 6538), methicillin-resistant Staphylococcus aureus (ATCC 33591), Staphylococcus epidermidis (ATCC 12228), Pseudomonas aeruginosa (ATCC 9027), and Escherichia coli (ATCC 873). Furthermore, we assessed its efficacy in controlling antibiotic resistance, biofilm formation, and bacterial adhesion. All three antiseptic ophthalmic preparations showed significant anti-microbicidal and anti-biofilm activity, with the liposomes containing ozonated sunflower oil with the highest ability to control antibiotic resistance and bacteria adhesion to human corneal cells.

4.
Front Biosci (Landmark Ed) ; 28(7): 156, 2023 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-37525920

RESUMEN

BACKGROUND: The infection and negative effects of the SARS-CoV-2 (severe acute respiratory syndrome coronavirus) virus are mitigated by vaccines. It is unknown whether vaccination has worked by eliciting robust protective innate immune responses with high affinity. METHODS: Twenty healthy volunteers received three doses of Comirnaty (Pfizer Australia Pty Ltd.) and were evaluated 9 months after the second vaccination and 1 month after the booster dose. The exclusion criteria were the presence of adverse effects following the vaccination, a history of smoking, and heterologous immunization. The inclusion criteria were the absence of prior Coronavirus Disease (COVID)-19 history, the absence of adverse effects, and the absence of comorbidities. Specific phenotype and levels of CD107a and granzyme production by blood NK (natural killer) cells were analyzed after exposure to SARS-CoV-2 spike antigen (Wuhan, Alpha B.1.1.7, Delta B.1.617.2, and Omicron B1.1.529 variants), and related with anti-SARS-CoV-2 antibody production. RESULTS: The booster dose caused early NK CD56dim subset activation and memory-like phenotype. CONCLUSIONS: We report the relevance of the innate immune response, especially NK cells, to SARS-CoV-2 vaccines to guarantee efficient protection against the infection following a booster dose.


Asunto(s)
Antineoplásicos , COVID-19 , Humanos , SARS-CoV-2 , Vacunas contra la COVID-19 , COVID-19/prevención & control , Células Asesinas Naturales
5.
Cancers (Basel) ; 15(14)2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37509256

RESUMEN

The pivotal role of p53 in the regulation of a vast array of cellular functions has been the subject of extensive research. The biological activity of p53 is not strictly limited to cell cycle arrest but also includes the regulation of homeostasis, DNA repair, apoptosis, and senescence. Thus, mutations in the p53 gene with loss of function represent one of the major mechanisms for cancer development. As expected, due to its key role, p53 is expressed throughout the human body including the eye. Specifically, altered p53 signaling pathways have been implicated in the development of conjunctival and corneal tumors, retinoblastoma, uveal melanoma, and intraocular melanoma. As non-selective cancer chemotherapies as well as ionizing radiation can be associated with either poor efficacy or dose-limiting toxicities in the eye, reconstitution of the p53 signaling pathway currently represents an attractive target for cancer therapy. The present review discusses the role of p53 in the pathogenesis of these ocular tumors and outlines the various pharmacological activators of p53 that are currently under investigation for the treatment of ocular malignancies.

6.
Artículo en Inglés | MEDLINE | ID: mdl-37047869

RESUMEN

Per- and polyfluoroalkyl substances can be referred to as the most critical group of contaminants of emerging concern. They can accumulate in high concentration in the kidney and are known to potentially affect its function. Nonetheless, there is a lack of knowledge about their morphopathological effect on the glomerular filtration barrier. Since previous research suggests perfluorooctanoic acid (PFOA) induces glomerular protein leakage, the glomerular filtration barrier of 30 carp from the same parental stock (10 unexposed; 10 exposed to 200 ng L-1 of PFOA; and 10 exposed to 2 mg L-1 of PFOA for 56 days) was screened for possible PFOA-induced ultrastructural lesions in order to shed light on the related pathophysiology. PFOA exposure affected the glomerular filtration barrier in carp experimentally exposed to 2 mg L-1, showing ultrastructural alterations compatible with glomerulonephrosis: podocyte effacement, reduction of filtration slits and filtration slit diaphragms, basement membrane disarrangement, and occurrence of proteinaceous material in the urinary space. The results of the present research confirm the glomerular origin of the PFOA-induced protein leakage and can contribute to the mechanistic comprehension of PFOA's impact on renal function and to the assessment of the exposure effect of environmental pollutants on animals and humans, according to the One Health approach.


Asunto(s)
Fluorocarburos , Barrera de Filtración Glomerular , Humanos , Animales , Glomérulos Renales , Caprilatos/toxicidad , Fluorocarburos/toxicidad
7.
Biology (Basel) ; 12(3)2023 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-36979058

RESUMEN

The olfactory bulb (OB) is one of two regions of the mammalian brain which undergo continuous neuronal replacement during adulthood. A significant fraction of the cells added in adulthood to the bulbar circuitry is constituted by dopaminergic (DA) neurons. We took advantage of a peculiar property of dopaminergic neurons in transgenic mice expressing eGFP under the tyrosine hydroxylase (TH) promoter: while DA neurons located in the glomerular layer (GL) display full electrophysiological maturation, eGFP+ cells in the mitral layer (ML) show characteristics of immature cells. In addition, they also display a lower fluorescence intensity, possibly reflecting different degrees of maturation. To investigate whether this difference in maturation might be confirmed at the gene expression level, we used a fluorescence-activated cell sorting technique on enzymatically dissociated cells of the OB. The cells were divided into two groups based on their level of fluorescence, possibly corresponding to immature ML cells and fully mature DA neurons from the GL. Semiquantitative real-time PCR was performed to detect the level of expression of genes linked to the degree of maturation of DA neurons. We showed that indeed the cells expressing low eGFP fluorescence are immature neurons. Our method can be further used to explore the differences between these two groups of DA neurons.

8.
Eur J Immunol ; 53(4): e2149702, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36722608

RESUMEN

Psoriasis is a chronic inflammatory skin disease with an autoimmune component and associated with joint inflammation in up to 30% of cases. To investigate autoreactive T cells, we developed an imiquimod-induced psoriasis-like inflammation model in K5-mOVA.tg C57BL/6 mice expressing ovalbumin (OVA) on the keratinocyte membrane, adoptively transferred with OT-I OVA-specific CD8+ T cells. We evaluated the expansion of OT-I CD8+ T cells and their localization in skin, blood, and spleen. scRNA-seq and TCR sequencing data from patients with psoriatic arthritis were also analyzed. In the imiquimod-treated K5-mOVA.tg mouse model, OT-I T cells were markedly expanded in the skin and blood at early time points. OT-I T cells in the skin showed mainly CXCR3+ effector memory phenotype, whereas in peripheral blood there was an expansion of CCR4+ CXCR3+ OT-I cells. At a later time point, expanded OVA-specific T-cell population was found in the spleen. In patients with psoriatic arthritis, scRNA-seq and TCR sequencing data showed clonal expansion of CCR4+ TCM cells in the circulation and further expansion in the synovial fluid. Importantly, there was a clonotype overlap between CCR4+ TCM in the peripheral blood and CD8+ T-cell effectors in the synovial fluid. This mechanism could play a role in the generation and spreading of autoreactive T cells to the synovioentheseal tissues in psoriasis patients at risk of developing psoriatic arthritis.


Asunto(s)
Artritis Psoriásica , Psoriasis , Enfermedades de la Piel , Humanos , Ratones , Animales , Linfocitos T CD8-positivos , Imiquimod , Ratones Endogámicos C57BL , Inflamación , Receptores de Antígenos de Linfocitos T/genética , Receptores CCR4
9.
Int J Mol Sci ; 24(3)2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36768681

RESUMEN

Despite curcumin (CUR) inhibiting cell proliferation in vitro by activating apoptotic cell death, its use in pharmacological therapy is hampered by poor solubility, low stability in biological fluids, and rapid removal from the body. Therefore, CUR-derivatives with better biological and chemical-physical characteristics are needed. The bis-ketone moiety of CUR strongly influences its stability in slightly alkaline solutions such as plasma. Here, we considered its replacement with isoxazole, beta-enamine, or oxime groups to obtain more stable derivatives. The evaluation of the chemical-physical characteristics showed that only of the isoxazole derivatives 2 and 22 had better potential than CUR in terms of bioavailability. The UV-visible spectrum analysis showed that derivatives 2 and 22 had better stability than CUR in solutions mimicking the biological fluids. When tested on a panel of cell lines, derivatives 2 and 22 had marked cytotoxicity (IC50 = 0.5 µM) compared with CUR only (IC50 = 17 µM) in the chronic myeloid leukemia (CML)-derived K562 cell line. The derivative 22 was the more selective for CML cells. When administered at the average concentration found for CUR in the blood of patients, derivatives 2 and 22 had potent effects on cell cycle progression and apoptosis initiation, while CUR was ineffective. The apoptotic effect of derivatives 2 and 22 was associated with low necrosis. In addition, derivative 22 was able to reverse drug resistance in K562 cells resistant to imatinib (IM), the reference drug used in CML therapy. The cytotoxicity of derivative 22 on IM-sensitive and resistant cells was associated with upregulation of FOXN3 and CDKN1A expression, G2/M arrest, and triggering of apoptosis. In conclusion, derivative 22 has chemical-physical characteristics and biological effects superior to CUR, which allow us to hypothesize its future use in the therapy of CML and CML forms resistant to IM, either alone or in combination with this drug.


Asunto(s)
Antineoplásicos , Curcumina , Leucemia Mielógena Crónica BCR-ABL Positiva , Humanos , Mesilato de Imatinib/farmacología , Mesilato de Imatinib/uso terapéutico , Curcumina/farmacología , Curcumina/uso terapéutico , Antineoplásicos/uso terapéutico , Células K562 , Apoptosis , Resistencia a Antineoplásicos , Línea Celular Tumoral , Puntos de Control de la Fase G2 del Ciclo Celular , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo
10.
Antioxidants (Basel) ; 11(12)2022 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-36552548

RESUMEN

Hyperglycaemia and increased circulating saturated fatty acids are key metabolic features of type 2 diabetes mellitus (T2DM) that contribute to diabetic retinopathy pathogenesis. Contrarily, tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) has been shown to improve or prevent T2DM. This study aimed at investigating the effect of TRAIL in an in vitro model of human retinal pigment epithelium: the ARPE-19 cell line, treated with palmitic acid (PA) in the presence of high glucose concentration. PA caused a drop in cellular metabolic activity and cell viability as well as an increase in apoptosis rates, which were paralleled by an upregulation of reactive oxygen species (ROS) generation as well as mitochondrial fragmentation. Despite ARPE-19 cells expressing TRAIL-R2 at the cell surface, TRAIL failed to counteract the cytotoxic effects of PA. However, when TRAIL was used alongside PA and then removed or used alone following PA challenge, it partially attenuated PA-induced lipotoxicity. This effect of TRAIL appeared to rely upon the modulation of inflammation and ROS production. Thus, TRAIL exerted a trophic effect on ARPE-19 cells, which became evident only when the lipotoxic insult was removed. Nevertheless, whether recombinant TRAIL might have a therapeutic potential for the treatment of diabetic retinopathy requires further investigation.

11.
Front Pharmacol ; 13: 1018761, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36582523

RESUMEN

SARS-CoV viruses have been shown to downregulate cellular events that control antiviral defenses. They adopt several strategies to silence p53, key molecule for cell homeostasis and immune control, indicating that p53 has a central role in controlling their proliferation in the host. Specific actions are the stabilization of its inhibitor, MDM2, and the interference with its transcriptional activity. The aim of our work was to evaluate a new approach against SARS-CoV-2 by using MDM2 inhibitors to raise p53 levels and activate p53-dependent pathways, therefore leading to cell cycle inhibition. Experimental setting was performed in the alveolar basal epithelial cell line A549-hACE2, expressing high level of ACE2 receptor, to allow virus entry, as well as p53 wild-type. Cells were treated with several concentrations of Nutlin-3 or RG-7112, two known MDM2 inhibitors, for the instauration of a cell cycle block steady-state condition before and during SARS-CoV-2 infection, and for the evaluation of p53 activation and impact on virus release and related innate immune events. The results indicated an efficient cell cycle block with inhibition of the virion release and a significant inhibition of IL-6, NF-kB and IFN-λ expression. These data suggest that p53 is an efficient target for new therapies against the virus and that MDM2 inhibitors deserve to be further investigated in this field.

12.
Front Med (Lausanne) ; 9: 973856, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36388931

RESUMEN

The retina, the part of the eye, translates the light signal into an electric current that can be sent to the brain as visual information. To achieve this, the retina requires fine-tuned vascularization for its energy supply. Diabetic retinopathy (DR) causes alterations in the eye vascularization that reduce the oxygen supply with consequent retinal neurodegeneration. During DR, the mammalian target of rapamycin (mTOR) pathway seems to coordinate retinal neurodegeneration with multiple anabolic and catabolic processes, such as autophagy, oxidative stress, cell death, and the release of pro-inflammatory cytokines, which are closely related to chronic hyperglycemia. This review outlines the normal anatomy of the retina and how hyperglycemia can be involved in the neurodegeneration underlying this disease through over activation or inhibition of the mTOR pathway.

13.
Molecules ; 27(2)2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-35056786

RESUMEN

Chenodeoxycholic acid and ursodeoxycholic acid (CDCA and UDCA, respectively) have been conjugated with paclitaxel (PTX) anticancer drugs through a high-yield condensation reaction. Bile acid-PTX hybrids (BA-PTX) have been investigated for their pro-apoptotic activity towards a selection of cancer cell lines as well as healthy fibroblast cells. Chenodeoxycholic-PTX hybrid (CDC-PTX) displayed cytotoxicity and cytoselectivity similar to PTX, whereas ursodeoxycholic-PTX hybrid (UDC-PTX) displayed some anticancer activity only towards HCT116 colon carcinoma cells. Pacific Blue (PB) conjugated derivatives of CDC-PTX and UDC-PTX (CDC-PTX-PB and UDC-PTX-PB, respectively) were also prepared via a multistep synthesis for evaluating their ability to enter tumor cells. CDC-PTX-PB and UDC-PTX-PB flow cytometry clearly showed that both CDCA and UDCA conjugation to PTX improved its incoming into HCT116 cells, allowing the derivatives to enter the cells up to 99.9%, respect to 35% in the case of PTX. Mean fluorescence intensity analysis of cell populations treated with CDC-PTX-PB and UDC-PTX-PB also suggested that CDC-PTX-PB could have a greater ability to pass the plasmatic membrane than UDC-PTX-PB. Both hybrids showed significant lower toxicity with respect to PTX on the NIH-3T3 cell line.


Asunto(s)
Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacología , Ácidos y Sales Biliares/química , Ácidos y Sales Biliares/farmacología , Paclitaxel/química , Paclitaxel/farmacología , Animales , Antineoplásicos Fitogénicos/síntesis química , Apoptosis/efectos de los fármacos , Ácidos y Sales Biliares/síntesis química , Línea Celular , Supervivencia Celular/efectos de los fármacos , Neoplasias del Colon/tratamiento farmacológico , Ácido Desoxicólico/análogos & derivados , Ácido Desoxicólico/síntesis química , Ácido Desoxicólico/química , Ácido Desoxicólico/farmacología , Humanos , Leucemia/tratamiento farmacológico , Ratones , Paclitaxel/análogos & derivados , Paclitaxel/síntesis química
14.
Molecules ; 26(21)2021 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-34770777

RESUMEN

Cultivation of asparagus (Asparagus officinalis L.; Asp) for food and medicinal use has taken place since the early Roman Empire. Today, Asp represents a worldwide diffuse perennial crop. Lower portions of the spears represent a food industry waste product that can be used to extract bioactive molecules. In this study, aqueous extracts derived from the non-edible portion of the plant (hard stem) were prepared and characterized for chemical content. Furthermore, the biocompatibility and bioactivity of Asp aqueous extracts were assessed in vitro on normal fibroblasts and on breast cancer cell lines. Results showed no interference with fibroblast viability, while a remarkable cytostatic concentration-dependent activity, with significant G1/S cell cycle arrest, was specifically observed in breast cancer cells without apoptosis induction. Asp extracts were also shown to significantly inhibit cell migration. Further analyses showed that Asp extracts were characterized by specific pro-oxidant activity against tumoral cells, and, importantly, that their combination with menadione resulted in a significant enhancement of oxidants production with respect to menadione alone in breast cancer cells but not in normal cells. This selectivity of action on tumoral cells, together with the easiness of their preparation, makes the aqueous Asp extracts very attractive for further investigation in breast cancer research, particularly to investigate their role as possible co-adjuvant agents of clinical drug therapies.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Asparagus/química , Extractos Vegetales/farmacología , Animales , Antineoplásicos Fitogénicos/química , Apoptosis/efectos de los fármacos , Biomarcadores , Neoplasias de la Mama , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Cromatografía Liquida , Femenino , Citometría de Flujo , Humanos , Ratones , Espectrometría de Masas en Tándem
15.
Front Neural Circuits ; 15: 718221, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34690707

RESUMEN

The perception and discriminating of odors are sensory activities that are an integral part of our daily life. The first brain region where odors are processed is the olfactory bulb (OB). Among the different cell populations that make up this brain area, interneurons play an essential role in this sensory activity. Moreover, probably because of their activity, they represent an exception compared to other parts of the brain, since OB interneurons are continuously generated in the postnatal and adult period. In this review, we will focus on periglomerular (PG) cells which are a class of interneurons found in the glomerular layer of the OB. These interneurons can be classified into distinct subtypes based on their neurochemical nature, based on the neurotransmitter and calcium-binding proteins expressed by these cells. Dopaminergic (DA) periglomerular cells and calretinin (CR) cells are among the newly generated interneurons and play an important role in the physiology of OB. In the OB, DA cells are involved in the processing of odors and the adaptation of the bulbar network to external conditions. The main role of DA cells in OB appears to be the inhibition of glutamate release from olfactory sensory fibers. Calretinin cells are probably the best morphologically characterized interneurons among PG cells in OB, but little is known about their function except for their inhibitory effect on noisy random excitatory signals arriving at the main neurons. In this review, we will mainly describe the electrophysiological properties related to the excitability profiles of DA and CR cells, with a particular view on the differences that characterize DA mature interneurons from cells in different stages of adult neurogenesis.


Asunto(s)
Interneuronas , Bulbo Olfatorio , Calbindina 2 , Odorantes , Olfato
16.
Int J Mol Sci ; 22(17)2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34502368

RESUMEN

Psoriasis is a chronic inflammatory disease of the skin associated with systemic and joint manifestations and accompanied by comorbidities, such as metabolic syndrome and increased risk of cardiovascular disease. Psoriasis has a strong genetic basis, but exacerbation requires additional signals that are still largely unknown. The clinical manifestations involve the interplay between dendritic and T cells in the dermis to generate a self-sustaining inflammatory loop around the TNFα/IL-23/IL-17 axis that forms the psoriatic plaque. In addition, in recent years, a critical role of keratinocytes in establishing the interplay that leads to psoriatic plaques' formation has re-emerged. In this review, we analyze the most recent evidence of the role of keratinocytes and danger associates molecular patterns, such as extracellular ATP in the generation of psoriatic skin lesions. Particular attention will be given to purinergic signaling in inflammasome activation and in the initiation of psoriasis. In this phase, keratinocytes' inflammasome may trigger early inflammatory pathways involving IL-1ß production, to elicit the subsequent cascade of events that leads to dendritic and T cell activation. Since psoriasis is likely triggered by skin-damaging events and trauma, we can envisage that intracellular ATP, released by damaged cells, may play a role in triggering the inflammatory response underlying the pathogenesis of the disease by activating the inflammasome. Therefore, purinergic signaling in the skin could represent a new and early step of psoriasis; thus, opening the possibility to target single molecular actors of the purinome to develop new psoriasis treatments.


Asunto(s)
Inflamasomas/metabolismo , Queratinocitos/metabolismo , Psoriasis/patología , Humanos , Inflamación/inmunología , Interleucina-17/metabolismo , Interleucina-1beta , Interleucina-23/farmacocinética , Psoriasis/metabolismo , Purinas/metabolismo , Receptores Purinérgicos P1/metabolismo , Receptores Purinérgicos P2/metabolismo , Transducción de Señal , Piel/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
17.
Curr Oncol ; 28(4): 2439-2451, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34287267

RESUMEN

In B-chronic lymphocytic leukemia (B-CLL), the interaction between leukemic cells and the microenvironment promotes tumor cell survival. The Bruton's tyrosine kinase (BTK) inhibitor ibrutinib is one of the first-in-class molecules for the treatment of B-CLL patients; however, the emerging mechanisms of resistance to ibrutinib call for new therapeutic strategies. The purpose of the current study was to investigate the ability of ibrutinib plus the MDM2-inhibitor nutlin-3 to counteract the tumor microenvironment protective effect. We observed that primary B-CLL cells cultivated in microenvironment mimicking conditions were protected from apoptosis by the up-regulation of c-MYC and of p53. In the same setting, combined treatments with ibrutinib plus nutlin-3 led to significantly higher levels of apoptosis compared to the single treatments, counteracting the c-MYC up-regulation. Moreover, the combination induced high p53 levels and a significant dissipation of the mitochondrial membrane potential, together with BAX cleavage in the more active p18 form and phospho-BAD down-regulation, that are key components of the mitochondrial apoptotic pathway, enhancing the apoptosis level. Our findings propose a new therapeutic strategy to overcome the tumor microenvironment protection involved in B-CLL resistance to drugs, with possible clinical implications also for other hematologic and solid tumors for which ibrutinib is considered a therapeutic option.


Asunto(s)
Antineoplásicos , Leucemia Linfocítica Crónica de Células B , Agammaglobulinemia Tirosina Quinasa/antagonistas & inhibidores , Antineoplásicos/farmacología , Apoptosis , Humanos , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Leucemia Linfocítica Crónica de Células B/genética , Proteínas Proto-Oncogénicas c-mdm2/antagonistas & inhibidores , Pirazoles/farmacología , Pirimidinas/farmacología , Células Tumorales Cultivadas , Microambiente Tumoral
18.
Int J Mol Sci ; 22(4)2021 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-33562019

RESUMEN

Among the phenolic acids tested on the K562 cell line, a model of chronic myeloid leukemia (CML), caffeic acid (CA) was biologically active on sensitive and imatinib (IM)-resistant cells at micro-molar concentration, either in terms of reduction of cell proliferation or triggering of apoptosis. The CA treatment provoked mitochondrial membrane depolarization, genomic DNA fragmentation and phosphatidylserine exposure, hallmarks of apoptosis. Cell cycle analysis following the treatment with comparable cytotoxic concentrations of IM or CA showed marked differences in the distribution profiles. The reduction of cell proliferation by CA administration was associated with increased expression of two cell cycle repressor genes, CDKN1A and CHES1, while IM at a cytotoxic concentration increased the CHES1 but not the CDKN1A expression. In addition, CA treatment affected the proliferation and triggered the apoptosis in IM-resistant cells. Taken together, these data suggested that CA induced the anti-proliferative effect and triggered apoptosis of CML cells by a different mechanism than IM. Finally, the combined administration of IM and CA at suboptimal concentrations evidenced a synergy of action in determining the anti-proliferative effect and triggering apoptosis. The ability of CA to potentiate the anti-leukemic effect of IM highlighted the nutraceutical potential of CA in CML.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Ácidos Cafeicos/farmacología , Proliferación Celular/efectos de los fármacos , Mesilato de Imatinib/farmacología , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Proteínas de Ciclo Celular/biosíntesis , Línea Celular Tumoral , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/biosíntesis , Fragmentación del ADN/efectos de los fármacos , Resistencia a Antineoplásicos/fisiología , Sinergismo Farmacológico , Factores de Transcripción Forkhead/biosíntesis , Humanos , Membranas Mitocondriales/fisiología
19.
Nutr Metab Cardiovasc Dis ; 31(1): 344-353, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33500110

RESUMEN

BACKGROUND AND AIMS: Cardiovascular disease is the main cause of death worldwide, but the collective efforts to prevent this pathological condition are directed exclusively to individuals at higher risk due to hypercholesterolemia, hypertension, obesity, diabetes. Recently, vitamin D deficiency was identified as a risk factor for cardiovascular disease in healthy people, as it predisposes to different vascular dysfunctions that can result in plaque development and fragility. In this scenario, the fundamental aim of the study was to reproduce a disease model inducing vitamin D deficiency and atheromatosis in ApoE-/- mice and then to evaluate the impact of this vitamin D status on the onset/progression of atheromatosis, focusing on plaque formation and instability. METHODS AND RESULTS: In our murine disease model, vitamin D deficiency was achieved by 3 weeks of vitamin D deficient diet along with intraperitoneal paricalcitol injections, while atheromatosis by western-type diet administration. Under these experimental conditions, vitamin D deficient mice developed more unstable atheromatous plaques with reduced or absent fibrotic cap. Since calcium and phosphorus metabolism and also cholesterol and triglycerides systemic concentration were not affected by vitamin D level, our results highlighted the role of vitamin D deficiency in the formation/instability of atheromatous plaque and, although further studies are needed, suggested a possible intervention with vitamin D to prevent or delay the atheromatous disease. CONCLUSIONS: The data obtained open the question about the potential role of the vitamins in the pharmacological treatments of cardiovascular disorders as coadjutant of the primary drugs used for these pathologies.


Asunto(s)
Enfermedades de la Aorta/etiología , Aterosclerosis/etiología , Deficiencia de Vitamina D/complicaciones , Vitamina D/análogos & derivados , Animales , Aorta/metabolismo , Aorta/patología , Enfermedades de la Aorta/sangre , Enfermedades de la Aorta/patología , Aterosclerosis/sangre , Aterosclerosis/patología , Biomarcadores/sangre , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Fibrosis , Lípidos/sangre , Ratones Noqueados para ApoE , Placa Aterosclerótica , Rotura Espontánea , Vitamina D/sangre , Deficiencia de Vitamina D/sangre
20.
Front Immunol ; 11: 572876, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33193356

RESUMEN

Patients with systemic lupus erythematosus (SLE) have a significant increase in cardiovascular (CV) risk although they display a preserved number of circulating angiogenic CD3+CD31+CXCR4+ T cells (Tang), a subpopulation of T cells which promotes repair of damaged endothelium. This happens due to the concomitant expansion of a Tang subset with immunosenescent features, such as the loss of CD28. Therefore, the aim of this study was to elucidate the interplay between Tang subpopulations and endothelial cells in a group of young SLE patients without previous cardiovascular events. Twenty SLE female patients and 10 healthy controls (HCs) were recruited. Flow cytometric analysis of endothelial progenitor cells (EPCs) and Tang subsets were performed and serum levels of interleukin (IL)-6, -8, matrix metalloproteinase (MMP)-9 and interferon (IFN)-γ were measured. Human umbilical vein endothelial cells (HUVECs) proliferation and pro-inflammatory phenotype in response to subjects' serum stimulation were also evaluated. Results showed that the percentage of Tang and EPC subsets was reduced in SLE patients compared with HCs, with a marked increase of senescent CD28null cells among Tang subset. SLE disease activity index-2000 (SLEDAI-2K) was inversed related to Tang cells percentage. Furthermore, IL-8 serum levels were directly correlated with the percentage of Tang and inversely related to the CD28null Tang subsets. We indirectly evaluated the role of the Tang subset on the endothelium upon stimulation with serum from subjects with a low percentage of Tang CD3+ cells in HUVECs. HUVECs displayed pro-inflammatory phenotype with up-regulation of mRNA for IL-6, intercellular adhesion molecule (ICAM)-1 and endothelial leukocyte adhesion molecule (ELAM)-1. Cell proliferation rate was directly related to IL-8 serum levels and EPC percentage. In highly selected young SLE patients without previous CV events, we found that the deterioration of Tang compartment is an early event in disease course, preceding the development of an overt cardiovascular disease and potentially mediated by SLE-specific mechanisms. The overcome of the CD28null subset exerts detrimental role over the Tang phenotype, where Tang could exert an anti-inflammatory effect on endothelial cells and might orchestrate via IL-8 the function of EPCs, ultimately modulating endothelial proliferation rate.


Asunto(s)
Enfermedades Cardiovasculares/inmunología , Células Endoteliales/fisiología , Lupus Eritematoso Sistémico/inmunología , Subgrupos de Linfocitos T/inmunología , Linfocitos T/inmunología , Adulto , Animales , Femenino , Células Endoteliales de la Vena Umbilical Humana , Humanos , Inmunofenotipificación , Inmunosenescencia , Interleucina-8/metabolismo , Masculino , Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA