Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Inherit Metab Dis ; 42(5): 944-954, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31025705

RESUMEN

Mutations in at least 13 different genes (called CLNs) underlie various forms of neuronal ceroid lipofuscinoses (NCLs), a group of the most common neurodegenerative lysosomal storage diseases. While inactivating mutations in the CLN1 gene, encoding palmitoyl-protein thioesterases-1 (PPT1), cause infantile NCL (INCL), those in the CLN3 gene, encoding a protein of unknown function, underlie juvenile NCL (JNCL). PPT1 depalmitoylates S-palmitoylated proteins (constituents of ceroid) required for their degradation by lysosomal hydrolases and PPT1-deficiency causes lysosomal accumulation of autofluorescent ceroid leading to INCL. Because intracellular accumulation of ceroid is a characteristic of all NCLs, a common pathogenic link for these diseases has been suggested. It has been reported that CLN3-mutations suppress the exit of cation-independent mannose 6-phosphate receptor (CI-M6PR) from the trans Golgi network (TGN). Because CI-M6PR transports soluble proteins such as PPT1 from the TGN to the lysosome, we hypothesized that CLN3-mutations may cause lysosomal PPT1-insufficiency contributing to JNCL pathogenesis. Here, we report that the lysosomes in Cln3-mutant mice, which mimic JNCL, and those in cultured cells from JNCL patients, contain significantly reduced levels of Ppt1-protein and Ppt1-enzyme activity and progressively accumulate autofluorescent ceroid. Furthermore, in JNCL fibroblasts the V0a1 subunit of v-ATPase, which regulates lysosomal acidification, is mislocalized to the plasma membrane instead of its normal location on lysosomal membrane. This defect dysregulates lysosomal acidification, as we previously reported in Cln1 -/- mice, which mimic INCL. Our findings uncover a previously unrecognized role of CLN3 in lysosomal homeostasis and suggest that CLN3-mutations causing lysosomal Ppt1-insuffiiciency may at least in part contribute to JNCL pathogenesis.


Asunto(s)
Lisosomas/enzimología , Glicoproteínas de Membrana/genética , Chaperonas Moleculares/genética , Lipofuscinosis Ceroideas Neuronales/genética , Tioléster Hidrolasas/metabolismo , Animales , Línea Celular , Células Cultivadas , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Humanos , Ratones , Ratones Endogámicos C57BL , Mutación , Lipofuscinosis Ceroideas Neuronales/patología , Tioléster Hidrolasas/genética
2.
Mol Neurodegener ; 14(1): 4, 2019 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-30651094

RESUMEN

Neuronal Ceroid Lipofuscinoses (NCLs), commonly known as Batten disease, constitute a group of the most prevalent neurodegenerative lysosomal storage disorders (LSDs). Mutations in at least 13 different genes (called CLNs) cause various forms of NCLs. Clinically, the NCLs manifest early impairment of vision, progressive decline in cognitive and motor functions, seizures and a shortened lifespan. At the cellular level, all NCLs show intracellular accumulation of autofluorescent material (called ceroid) and progressive neuron loss. Despite intense studies the normal physiological functions of each of the CLN genes remain poorly understood. Consequently, the development of mechanism-based therapeutic strategies remains challenging. Endolysosomal dysfunction contributes to pathogenesis of virtually all LSDs. Studies within the past decade have drastically changed the notion that the lysosomes are merely the terminal degradative organelles. The emerging new roles of the lysosome include its central role in nutrient-dependent signal transduction regulating metabolism and cellular proliferation or quiescence. In this review, we first provide a brief overview of the endolysosomal and autophagic pathways, lysosomal acidification and endosome-lysosome and autophagosome-lysosome fusions. We emphasize the importance of these processes as their dysregulation leads to pathogenesis of many LSDs including the NCLs. We also describe what is currently known about each of the 13 CLN genes and their products and how understanding the emerging new roles of the lysosome may clarify the underlying pathogenic mechanisms of the NCLs. Finally, we discuss the current and emerging therapeutic strategies for various NCLs.


Asunto(s)
Lisosomas , Lipofuscinosis Ceroideas Neuronales , Humanos
3.
Mol Cancer Res ; 15(1): 26-34, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27807188

RESUMEN

Peritoneal carcinomatosis and peritoneal sarcomatosis is a potential complication of nearly all solid tumors and results in profoundly increased morbidity and mortality. Despite the ubiquity of peritoneal carcinomatosis/peritoneal sarcomatosis, there are no clinically relevant targeted therapies for either its treatment or prevention. To identify potential therapies, we developed in vitro models of peritoneal carcinomatosis/peritoneal sarcomatosis using tumor cell lines and patient-derived spheroids (PDS) that recapitulate anoikis resistance and spheroid proliferation across multiple cancer types. Epithelial- and mesenchymal-derived cancer cell lines (YOU, PANC1, HEYA8, CHLA10, and TC71) were used to generate spheroids and establish growth characteristics. Differential gene expression analyses of these spheroids to matched adherent cells revealed a consensus spheroid signature. This spheroid signature discriminates primary tumor specimens from tumor cells found in ascites of ovarian cancer patients and in our PDS models. Key in this gene expression signature is BNIP3 and BNIP3L, known regulators of autophagy and apoptosis. Elevated BNIP3 mRNA expression is associated with poor survival in ovarian cancer patients and elevated BNIP3 protein, as measured by IHC, and is also associated with higher grade tumors and shorter survival. Pharmacologic induction of autophagy with rapamycin significantly increased spheroid formation and survival while decreasing the induction of apoptosis. In contrast, the autophagy inhibitor hydroxychloroquine abrogated spheroid formation with a clear increase in apoptosis. Modulation of BNIP3 and the critical autophagy gene Beclin-1 (BECN1) also caused a significant decrease in spheroid formation. Combined, these data demonstrate how modulation of BNIP3-related autophagy, in PDS and in vitro spheroid models, alters the survival and morphology of spheroids. IMPLICATIONS: Development of BNIP3/BNIP3L-targeting agents or autophagy-targeting agents may reduce morbidity and mortality associated with peritoneal carcinomatosis and sarcomatosis. Mol Cancer Res; 15(1); 26-34. ©2016 AACR.


Asunto(s)
Anoicis , Autofagia , Modelos Biológicos , Enfermedades Peritoneales/patología , Anoicis/genética , Ascitis/patología , Autofagia/genética , Adhesión Celular/genética , Línea Celular Tumoral , Proliferación Celular , Supervivencia sin Enfermedad , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Enfermedades Peritoneales/genética , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , ARN Neoplásico/metabolismo , Esferoides Celulares/metabolismo , Esferoides Celulares/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...