Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Nat Genet ; 56(5): 925-937, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38658794

RESUMEN

CRISPR base editing screens enable analysis of disease-associated variants at scale; however, variable efficiency and precision confounds the assessment of variant-induced phenotypes. Here, we provide an integrated experimental and computational pipeline that improves estimation of variant effects in base editing screens. We use a reporter construct to measure guide RNA (gRNA) editing outcomes alongside their phenotypic consequences and introduce base editor screen analysis with activity normalization (BEAN), a Bayesian network that uses per-guide editing outcomes provided by the reporter and target site chromatin accessibility to estimate variant impacts. BEAN outperforms existing tools in variant effect quantification. We use BEAN to pinpoint common regulatory variants that alter low-density lipoprotein (LDL) uptake, implicating previously unreported genes. Additionally, through saturation base editing of LDLR, we accurately quantify missense variant pathogenicity that is consistent with measurements in UK Biobank patients and identify underlying structural mechanisms. This work provides a widely applicable approach to improve the power of base editing screens for disease-associated variant characterization.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Genotipo , Fenotipo , ARN Guía de Sistemas CRISPR-Cas , Humanos , Edición Génica/métodos , ARN Guía de Sistemas CRISPR-Cas/genética , Teorema de Bayes , Receptores de LDL/genética , Células HEK293
2.
medRxiv ; 2023 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-37732177

RESUMEN

CRISPR base editing screens are powerful tools for studying disease-associated variants at scale. However, the efficiency and precision of base editing perturbations vary, confounding the assessment of variant-induced phenotypic effects. Here, we provide an integrated pipeline that improves the estimation of variant impact in base editing screens. We perform high-throughput ABE8e-SpRY base editing screens with an integrated reporter construct to measure the editing efficiency and outcomes of each gRNA alongside their phenotypic consequences. We introduce BEAN, a Bayesian network that accounts for per-guide editing outcomes and target site chromatin accessibility to estimate variant impacts. We show this pipeline attains superior performance compared to existing tools in variant classification and effect size quantification. We use BEAN to pinpoint common variants that alter LDL uptake, implicating novel genes. Additionally, through saturation base editing of LDLR, we enable accurate quantitative prediction of the effects of missense variants on LDL-C levels, which aligns with measurements in UK Biobank individuals, and identify structural mechanisms underlying variant pathogenicity. This work provides a widely applicable approach to improve the power of base editor screens for disease-associated variant characterization.

3.
Cell Genom ; 3(5): 100304, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37228746

RESUMEN

Genetic variation contributes greatly to LDL cholesterol (LDL-C) levels and coronary artery disease risk. By combining analysis of rare coding variants from the UK Biobank and genome-scale CRISPR-Cas9 knockout and activation screening, we substantially improve the identification of genes whose disruption alters serum LDL-C levels. We identify 21 genes in which rare coding variants significantly alter LDL-C levels at least partially through altered LDL-C uptake. We use co-essentiality-based gene module analysis to show that dysfunction of the RAB10 vesicle transport pathway leads to hypercholesterolemia in humans and mice by impairing surface LDL receptor levels. Further, we demonstrate that loss of function of OTX2 leads to robust reduction in serum LDL-C levels in mice and humans by increasing cellular LDL-C uptake. Altogether, we present an integrated approach that improves our understanding of the genetic regulators of LDL-C levels and provides a roadmap for further efforts to dissect complex human disease genetics.

4.
Am J Hum Genet ; 110(6): 940-949, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37236177

RESUMEN

While pathogenic variants can significantly increase disease risk, it is still challenging to estimate the clinical impact of rare missense variants more generally. Even in genes such as BRCA2 or PALB2, large cohort studies find no significant association between breast cancer and rare missense variants collectively. Here, we introduce REGatta, a method to estimate clinical risk from variants in smaller segments of individual genes. We first define these regions by using the density of pathogenic diagnostic reports and then calculate the relative risk in each region by using over 200,000 exome sequences in the UK Biobank. We apply this method in 13 genes with established roles across several monogenic disorders. In genes with no significant difference at the gene level, this approach significantly separates disease risk for individuals with rare missense variants at higher or lower risk (BRCA2 regional model OR = 1.46 [1.12, 1.79], p = 0.0036 vs. BRCA2 gene model OR = 0.96 [0.85, 1.07] p = 0.4171). We find high concordance between these regional risk estimates and high-throughput functional assays of variant impact. We compare our method with existing methods and the use of protein domains (Pfam) as regions and find REGatta better identifies individuals at elevated or reduced risk. These regions provide useful priors and are potentially useful for improving risk assessment for genes associated with monogenic diseases.


Asunto(s)
Neoplasias de la Mama , Predisposición Genética a la Enfermedad , Humanos , Femenino , Proteína BRCA2/genética , Mutación Missense , Análisis de Secuencia de ADN , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Estudios de Cohortes
5.
Nat Commun ; 14(1): 2230, 2023 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-37076482

RESUMEN

Despite the increasing use of genomic sequencing in clinical practice, the interpretation of rare genetic variants remains challenging even in well-studied disease genes, resulting in many patients with Variants of Uncertain Significance (VUSs). Computational Variant Effect Predictors (VEPs) provide valuable evidence in variant assessment, but they are prone to misclassifying benign variants, contributing to false positives. Here, we develop Deciphering Mutations in Actionable Genes (DeMAG), a supervised classifier for missense variants trained using extensive diagnostic data available in 59 actionable disease genes (American College of Medical Genetics and Genomics Secondary Findings v2.0, ACMG SF v2.0). DeMAG improves performance over existing VEPs by reaching balanced specificity (82%) and sensitivity (94%) on clinical data, and includes a novel epistatic feature, the 'partners score', which leverages evolutionary and structural partnerships of residues. The 'partners score' provides a general framework for modeling epistatic interactions, integrating both clinical and functional information. We provide our tool and predictions for all missense variants in 316 clinically actionable disease genes (demag.org) to facilitate the interpretation of variants and improve clinical decision-making.


Asunto(s)
Genómica , Mutación Missense , Humanos , Estados Unidos , Genómica/métodos , Variación Genética , Pruebas Genéticas/métodos
6.
medRxiv ; 2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36711752

RESUMEN

While pathogenic variants significantly increase disease risk in many genes, it is still challenging to estimate the clinical impact of rare missense variants more generally. Even in genes such as BRCA2 or PALB2 , large cohort studies find no significant association between breast cancer and rare germline missense variants collectively. Here we introduce REGatta, a method to improve the estimation of clinical risk in gene segments. We define gene regions using the density of pathogenic diagnostic reports, and then calculate the relative risk in each of these regions using 109,581 exome sequences from women in the UK Biobank. We apply this method in seven established breast cancer genes, and identify regions in each gene with statistically significant differences in breast cancer incidence for rare missense carriers. Even in genes with no significant difference at the gene level, this approach significantly separates rare missense variant carriers at higher or lower risk ( BRCA2 regional model OR=1.46 [1.12, 1.79], p=0.0036 vs. BRCA2 gene model OR=0.96 [0.85,1.07] p=0.4171). We find high concordance between these regional risk estimates and high-throughput functional assays of variant impact. We compare with existing methods and the use of protein domains (Pfam) as regions, and find REGatta better identifies individuals at elevated or reduced risk. These regions provide useful priors which can potentially be used to improve risk assessment and clinical management.

7.
medRxiv ; 2023 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-36711907

RESUMEN

Deep mutational scanning assays enable the functional assessment of variants in high throughput. Phenotypic measurements from these assays are broadly concordant with clinical outcomes but are prone to noise at the individual variant level. We develop a framework to exploit related measurements within and across experimental assays to jointly estimate variant impact. Drawing from a large corpus of deep mutational scanning data, we collectively estimate the mean functional effect per AA residue position within each gene, normalize observed functional effects by substitution type, and make estimates for individual allelic variants with a pipeline called FUSE (Functional Substitution Estimation). FUSE improves the correlation of functional screening datasets covering the same variants, better separates estimated functional impacts for known pathogenic and benign variants (ClinVar BRCA1, p=2.24×10-51), and increases the number of variants for which predictions can be made (2,741 to 10,347) by inferring additional variant effects for substitutions not experimentally screened. For UK Biobank patients who carry a rare variant in TP53, FUSE significantly improves the separation of patients who develop cancer syndromes from those without cancer (p=1.77×10-6). These approaches promise to improve estimates of variant impact and broaden the utility of screening data generated from functional assays.

8.
bioRxiv ; 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36711952

RESUMEN

Genetic variation contributes greatly to LDL cholesterol (LDL-C) levels and coronary artery disease risk. By combining analysis of rare coding variants from the UK Biobank and genome-scale CRISPR-Cas9 knockout and activation screening, we have substantially improved the identification of genes whose disruption alters serum LDL-C levels. We identify 21 genes in which rare coding variants significantly alter LDL-C levels at least partially through altered LDL-C uptake. We use co-essentiality-based gene module analysis to show that dysfunction of the RAB10 vesicle transport pathway leads to hypercholesterolemia in humans and mice by impairing surface LDL receptor levels. Further, we demonstrate that loss of function of OTX2 leads to robust reduction in serum LDL-C levels in mice and humans by increasing cellular LDL-C uptake. Altogether, we present an integrated approach that improves our understanding of genetic regulators of LDL-C levels and provides a roadmap for further efforts to dissect complex human disease genetics.

9.
Genet Med ; 25(1): 16-26, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36305854

RESUMEN

PURPOSE: This study aimed to explore whether evidence of pathogenicity from prior variant classifications in ClinVar could be used to inform variant interpretation using the American College of Medical Genetics and Genomics/Association for Molecular Pathology clinical guidelines. METHODS: We identified distinct single-nucleotide variants (SNVs) that are either similar in location or in functional consequence to pathogenic variants in ClinVar and analyzed evidence in support of pathogenicity using 3 interpretation criteria. RESULTS: Thousands of variants, including many in clinically actionable disease genes (American College of Medical Genetics and Genomics secondary findings v3.0), have evidence of pathogenicity from existing variant classifications, accounting for 2.5% of nonsynonymous SNVs within ClinVar. Notably, there are many variants with uncertain or conflicting classifications that cause the same amino acid substitution as other pathogenic variants (PS1, N = 323), variants that are predicted to cause different amino acid substitutions in the same codon as pathogenic variants (PM5, N = 7692), and loss-of-function variants that are present in genes in which many loss-of-function variants are classified as pathogenic (PVS1, N = 3635). Most of these variants have similar computational predictions of pathogenicity and splicing effect as their associated pathogenic variants. CONCLUSION: Broadly, for >1.4 million SNVs exome wide, information from previously classified variants could be used to provide evidence of pathogenicity. We have developed a pipeline to identify variants meeting these criteria that may inform interpretation efforts.


Asunto(s)
Pruebas Genéticas , Genómica , Humanos , Exoma , Empalme del ARN , Patología Molecular , Variación Genética/genética
10.
Elife ; 112022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36515579

RESUMEN

The genetic basis of most traits is highly polygenic and dominated by non-coding alleles. It is widely assumed that such alleles exert small regulatory effects on the expression of cis-linked genes. However, despite the availability of gene expression and epigenomic datasets, few variant-to-gene links have emerged. It is unclear whether these sparse results are due to limitations in available data and methods, or to deficiencies in the underlying assumed model. To better distinguish between these possibilities, we identified 220 gene-trait pairs in which protein-coding variants influence a complex trait or its Mendelian cognate. Despite the presence of expression quantitative trait loci near most GWAS associations, by applying a gene-based approach we found limited evidence that the baseline expression of trait-related genes explains GWAS associations, whether using colocalization methods (8% of genes implicated), transcription-wide association (2% of genes implicated), or a combination of regulatory annotations and distance (4% of genes implicated). These results contradict the hypothesis that most complex trait-associated variants coincide with homeostatic expression QTLs, suggesting that better models are needed. The field must confront this deficit and pursue this 'missing regulation.'


Asunto(s)
Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo , Humanos , Estudio de Asociación del Genoma Completo/métodos , Fenotipo , Herencia Multifactorial/genética , Epigenómica , Polimorfismo de Nucleótido Simple , Predisposición Genética a la Enfermedad
11.
J Crohns Colitis ; 15(11): 1908-1919, 2021 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-33891011

RESUMEN

BACKGROUND AND AIMS: Very early onset inflammatory bowel disease [VEOIBD] is characterized by intestinal inflammation affecting infants and children less than 6 years of age. To date, over 60 monogenic aetiologies of VEOIBD have been identified, many characterized by highly penetrant recessive or dominant variants in underlying immune and/or epithelial pathways. We sought to identify the genetic cause of VEOIBD in a subset of patients with a unique clinical presentation. METHODS: Whole exome sequencing was performed on five families with ten patients who presented with a similar constellation of symptoms including medically refractory infantile-onset IBD, bilateral sensorineural hearing loss and, in the majority, recurrent infections. Genetic aetiologies of VEOIBD were assessed and Sanger sequencing was performed to confirm novel genetic findings. Western analysis on peripheral blood mononuclear cells and functional studies with epithelial cell lines were employed. RESULTS: In each of the ten patients, we identified damaging heterozygous or biallelic variants in the Syntaxin-Binding Protein 3 gene [STXBP3], a protein known to regulate intracellular vesicular trafficking in the syntaxin-binding protein family of molecules, but not associated to date with either VEOIBD or sensorineural hearing loss. These mutations interfere with either intron splicing or protein stability and lead to reduced STXBP3 protein expression. Knock-down of STXBP3 in CaCo2 cells resulted in defects in cell polarity. CONCLUSION: Overall, we describe a novel genetic syndrome and identify a critical role for STXBP3 in VEOIBD, sensorineural hearing loss and immune dysregulation.


Asunto(s)
Pérdida Auditiva Sensorineural/genética , Enfermedades del Sistema Inmune/genética , Enfermedades Inflamatorias del Intestino/genética , Proteínas Qa-SNARE/análisis , Edad de Inicio , Femenino , Variación Genética/genética , Pérdida Auditiva Sensorineural/epidemiología , Humanos , Enfermedades del Sistema Inmune/epidemiología , Recién Nacido , Enfermedades Inflamatorias del Intestino/epidemiología , Masculino , Proteínas Qa-SNARE/genética , Secuenciación del Exoma
12.
PLoS Comput Biol ; 17(1): e1008605, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33417623

RESUMEN

Restoring gene function by the induced skipping of deleterious exons has been shown to be effective for treating genetic disorders. However, many of the clinically successful therapies for exon skipping are transient oligonucleotide-based treatments that require frequent dosing. CRISPR-Cas9 based genome editing that causes exon skipping is a promising therapeutic modality that may offer permanent alleviation of genetic disease. We show that machine learning can select Cas9 guide RNAs that disrupt splice acceptors and cause the skipping of targeted exons. We experimentally measured the exon skipping frequencies of a diverse genome-integrated library of 791 splice sequences targeted by 1,063 guide RNAs in mouse embryonic stem cells. We found that our method, SkipGuide, is able to identify effective guide RNAs with a precision of 0.68 (50% threshold predicted exon skipping frequency) and 0.93 (70% threshold predicted exon skipping frequency). We anticipate that SkipGuide will be useful for selecting guide RNA candidates for evaluation of CRISPR-Cas9-mediated exon skipping therapy.


Asunto(s)
Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Terapia Genética/métodos , Aprendizaje Automático , ARN Guía de Kinetoplastida/genética , Animales , Células Cultivadas , Células Madre Embrionarias , Exones , Biblioteca de Genes , Humanos , Ratones
13.
Nat Genet ; 52(11): 1145-1150, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33046855

RESUMEN

The influence of genetic background on driver mutations is well established; however, the mechanisms by which the background interacts with Mendelian loci remain unclear. We performed a systematic secondary-variant burden analysis of two independent cohorts of patients with Bardet-Biedl syndrome (BBS) with known recessive biallelic pathogenic mutations in one of 17 BBS genes for each individual. We observed a significant enrichment of trans-acting rare nonsynonymous secondary variants in patients with BBS compared with either population controls or a cohort of individuals with a non-BBS diagnosis and recessive variants in the same gene set. Strikingly, we found a significant over-representation of secondary alleles in chaperonin-encoding genes-a finding corroborated by the observation of epistatic interactions involving this complex in vivo. These data indicate a complex genetic architecture for BBS that informs the biological properties of disease modules and presents a model for secondary-variant burden analysis in recessive disorders.


Asunto(s)
Síndrome de Bardet-Biedl/genética , Variación Genética , Alelos , Estudios de Cohortes , Exoma , Humanos
14.
bioRxiv ; 2020 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-32869031

RESUMEN

The adenosine analogue remdesivir has emerged as a front-line antiviral treatment for SARS-CoV-2, with preliminary evidence that it reduces the duration and severity of illness1.Prior clinical studies have identified adverse events1,2, and remdesivir has been shown to inhibit mitochondrial RNA polymerase in biochemical experiments7, yet little is known about the specific genetic pathways involved in cellular remdesivir metabolism and cytotoxicity. Through genome-wide CRISPR-Cas9 screening and RNA sequencing, we show that remdesivir treatment leads to a repression of mitochondrial respiratory activity, and we identify five genes whose loss significantly reduces remdesivir cytotoxicity. In particular, we show that loss of the mitochondrial nucleoside transporter SLC29A3 mitigates remdesivir toxicity without a commensurate decrease in SARS-CoV-2 antiviral potency and that the mitochondrial adenylate kinase AK2 is a remdesivir kinase required for remdesivir efficacy and toxicity. This work elucidates the cellular mechanisms of remdesivir metabolism and provides a candidate gene target to reduce remdesivir cytotoxicity.

15.
Nat Commun ; 11(1): 3635, 2020 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-32820175

RESUMEN

Genetic variation can predispose to disease both through (i) monogenic risk variants that disrupt a physiologic pathway with large effect on disease and (ii) polygenic risk that involves many variants of small effect in different pathways. Few studies have explored the interplay between monogenic and polygenic risk. Here, we study 80,928 individuals to examine whether polygenic background can modify penetrance of disease in tier 1 genomic conditions - familial hypercholesterolemia, hereditary breast and ovarian cancer, and Lynch syndrome. Among carriers of a monogenic risk variant, we estimate substantial gradients in disease risk based on polygenic background - the probability of disease by age 75 years ranged from 17% to 78% for coronary artery disease, 13% to 76% for breast cancer, and 11% to 80% for colon cancer. We propose that accounting for polygenic background is likely to increase accuracy of risk estimation for individuals who inherit a monogenic risk variant.


Asunto(s)
Predisposición Genética a la Enfermedad , Herencia Multifactorial/genética , Penetrancia , Anciano , Neoplasias de la Mama/genética , Estudios de Casos y Controles , Neoplasias Colorrectales/genética , Enfermedad de la Arteria Coronaria/genética , Femenino , Genoma Humano , Humanos , Masculino , Persona de Mediana Edad , Oportunidad Relativa , Factores de Riesgo
16.
Cell ; 182(2): 463-480.e30, 2020 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-32533916

RESUMEN

Although base editors are widely used to install targeted point mutations, the factors that determine base editing outcomes are not well understood. We characterized sequence-activity relationships of 11 cytosine and adenine base editors (CBEs and ABEs) on 38,538 genomically integrated targets in mammalian cells and used the resulting outcomes to train BE-Hive, a machine learning model that accurately predicts base editing genotypic outcomes (R ≈ 0.9) and efficiency (R ≈ 0.7). We corrected 3,388 disease-associated SNVs with ≥90% precision, including 675 alleles with bystander nucleotides that BE-Hive correctly predicted would not be edited. We discovered determinants of previously unpredictable C-to-G, or C-to-A editing and used these discoveries to correct coding sequences of 174 pathogenic transversion SNVs with ≥90% precision. Finally, we used insights from BE-Hive to engineer novel CBE variants that modulate editing outcomes. These discoveries illuminate base editing, enable editing at previously intractable targets, and provide new base editors with improved editing capabilities.


Asunto(s)
Edición Génica/métodos , Aprendizaje Automático , Animales , Biblioteca de Genes , Humanos , Ratones , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Mutación Puntual , ARN Guía de Kinetoplastida/metabolismo
17.
JAMA Netw Open ; 3(4): e203959, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32347951

RESUMEN

Importance: Pathogenic DNA variants associated with familial hypercholesterolemia, hereditary breast and ovarian cancer syndrome, and Lynch syndrome are widely recognized as clinically important and actionable when identified, leading some clinicians to recommend population-wide genomic screening. Objectives: To assess the prevalence and clinical importance of pathogenic or likely pathogenic variants associated with each of 3 genomic conditions (familial hypercholesterolemia, hereditary breast and ovarian cancer syndrome, and Lynch syndrome) within the context of contemporary clinical care. Design, Setting, and Participants: This cohort study used gene-sequencing data from 49 738 participants in the UK Biobank who were recruited from 22 sites across the UK between March 21, 2006, and October 1, 2010. Inpatient hospital data date back to 1977; cancer registry data, to 1957; and death registry data, to 2006. Statistical analysis was performed from July 22, 2019, to November 15, 2019. Exposures: Pathogenic or likely pathogenic DNA variants classified by a clinical laboratory geneticist. Main Outcomes and Measures: Composite end point specific to each genomic condition based on atherosclerotic cardiovascular disease events for familial hypercholesterolemia, breast or ovarian cancer for hereditary breast and ovarian cancer syndrome, and colorectal or uterine cancer for Lynch syndrome. Results: Among 49 738 participants (mean [SD] age, 57 [8] years; 27 144 female [55%]), 441 (0.9%) harbored a pathogenic or likely pathogenic variant associated with any of 3 genomic conditions, including 131 (0.3%) for familial hypercholesterolemia, 235 (0.5%) for hereditary breast and ovarian cancer syndrome, and 76 (0.2%) for Lynch syndrome. Presence of these variants was associated with increased risk of disease: for familial hypercholesterolemia, 28 of 131 carriers (21.4%) vs 4663 of 49 607 noncarriers (9.4%) developed atherosclerotic cardiovascular disease; for hereditary breast and ovarian cancer syndrome, 32 of 116 female carriers (27.6%) vs 2080 of 27 028 female noncarriers (7.7%) developed associated cancers; and for Lynch syndrome, 17 of 76 carriers (22.4%) vs 929 of 49 662 noncarriers (1.9%) developed colorectal or uterine cancer. The predicted probability of disease at age 75 years despite contemporary clinical care was 45.3% for carriers of familial hypercholesterolemia, 41.1% for hereditary breast and ovarian cancer syndrome, and 38.3% for Lynch syndrome. Across the 3 conditions, 39.7% (175 of 441) of the carriers reported a family history of disease vs 23.2% (34 517 of 148 772) of noncarriers. Conclusions and Relevance: The findings suggest that approximately 1% of the middle-aged adult population in the UK Biobank harbored a pathogenic variant associated with any of 3 genomic conditions. These variants were associated with an increased risk of disease despite contemporary clinical care and were not reliably detected by family history.


Asunto(s)
Neoplasias Colorrectales Hereditarias sin Poliposis/genética , Predisposición Genética a la Enfermedad/epidemiología , Síndrome de Cáncer de Mama y Ovario Hereditario/genética , Hiperlipoproteinemia Tipo II/genética , Anciano , Estudios de Cohortes , Femenino , Heterocigoto , Humanos , Masculino , Persona de Mediana Edad , Linaje , Modelos de Riesgos Proporcionales , Reino Unido/epidemiología , Secuenciación del Exoma
18.
Nat Genet ; 51(9): 1308-1314, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31406347

RESUMEN

Pancreatic ductal adenocarcinoma is an aggressive cancer with limited treatment options1. Approximately 10% of cases exhibit familial predisposition, but causative genes are not known in most families2. We perform whole-genome sequence analysis in a family with multiple cases of pancreatic ductal adenocarcinoma and identify a germline truncating mutation in the member of the RAS oncogene family-like 3 (RABL3) gene. Heterozygous rabl3 mutant zebrafish show increased susceptibility to cancer formation. Transcriptomic and mass spectrometry approaches implicate RABL3 in RAS pathway regulation and identify an interaction with RAP1GDS1 (SmgGDS), a chaperone regulating prenylation of RAS GTPases3. Indeed, the truncated mutant RABL3 protein accelerates KRAS prenylation and requires RAS proteins to promote cell proliferation. Finally, evidence in patient cohorts with developmental disorders implicates germline RABL3 mutations in RASopathy syndromes. Our studies identify RABL3 mutations as a target for genetic testing in cancer families and uncover a mechanism for dysregulated RAS activity in development and cancer.


Asunto(s)
Carcinoma Ductal Pancreático/patología , Carcinoma/patología , Predisposición Genética a la Enfermedad , Mutación de Línea Germinal , Neoplasias Pancreáticas/patología , Prenilación , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteínas de Unión al GTP rab/genética , Adulto , Anciano , Anciano de 80 o más Años , Secuencia de Aminoácidos , Animales , Carcinoma/genética , Carcinoma/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Proliferación Celular , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Linaje , Proteínas Proto-Oncogénicas p21(ras)/genética , Homología de Secuencia , Pez Cebra
19.
Nature ; 567(7746): E1-E2, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30765887

RESUMEN

In this Article, a data processing error affected Fig. 3e and Extended Data Table 2; these errors have been corrected online.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA