Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Foods ; 11(20)2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-37430953

RESUMEN

Artisanal pasta made from wheat or underutilized cereal flours has grown in popularity with the expansion of the local and short food chains. Artisanal pasta makers do not use the same raw materials or production processes, leading to great variability in the final product. The purpose of the study is to determine the physicochemical and sensory characteristics of artisanal pasta made from durum wheat flour. Seven brands of fusilli pasta manufactured in the Occitanie region (France) were selected and analyzed in terms of their physicochemical composition (protein and ash content in dry samples), cooking properties (optimal cooking time, water absorption, and cooking loss), sensory characteristics (Pivot profile), and consumer appreciation. Differences in the physicochemical characteristics of the dry pasta samples partly explain the variations in pasta characteristics measured after cooking. The Pivot profile varied among pasta brands, but no major differences in hedonic properties were identified. To our knowledge, this is the first time that artisanal pasta made from flour has been characterized in terms of its physicochemical and sensory properties, which highlights the diversity of products on the market.

2.
J Food Sci ; 86(3): 724-729, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33533024

RESUMEN

Pasta made exclusively from legume has high nutritional potential (rich in protein and gluten free). However, it is difficult to produce 100% legume dough suitable for the extrusion step in pasta production that comprises hydration, mixing, and extrusion. This paper addresses the biochemical phenomena at the origin of the agglomeration of dough particles frequently reported in the literature, which results in very sticky dough that cannot be extruded. We tested changes in mixing conditions including mixing temperature, addition of antioxidants, and flour pretreatment. Our results suggest that enzymatic reactions, notably lipoxygenase related redox activity, are responsible for this impairment of dough mixing and extrusion. Some of the process conditions studied can be applied at industrial scale and will help produce a legume food with nutritional and culinary qualities, beneficial for people with celiac disease, or gluten intolerance, as well as the general population. PRACTICAL APPLICATION: In the context of a sustainable and healthy food transition, the food industry is developing legume-based food of high nutritional quality that is widely consumed, like pasta. However, using legumes often leads to technological problems during the mixing and extrusion of pasta. This article demonstrates they are linked to enzymatic oxidative phenomena and provides an easy solution to reduce the problems without drastically changing pasta processing. Applied at industrial scale, it will allow the production of naturally gluten-free pasta rich in protein (two to three times the protein content of wheat pasta), of good nutritional quality.


Asunto(s)
Fabaceae/química , Manipulación de Alimentos , Humanos , Valor Nutritivo , Temperatura
3.
PLoS One ; 11(9): e0160721, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27603917

RESUMEN

Wheat pasta has a compact structure built by a gluten network entrapping starch granules resulting in a low glycemic index, but is nevertheless unsuitable for gluten-intolerant people. High protein gluten-free legume flours, rich in fibers, resistant starch and minerals are thus a good alternative for gluten-free pasta production. In this study, gluten-free pasta was produced exclusively from faba, lentil or black-gram flours. The relationship between their structure, their cooking and Rheological properties and their in-vitro starch digestion was analyzed and compared to cereal gluten-free commercial pasta. Trypsin inhibitory activity, phytic acid and α-galactosides were determined in flours and in cooked pasta. All legume pasta were rich in protein, resistant starch and fibers. They had a thick but weak protein network, which is built during the pasta cooking step. This particular structure altered pasta springiness and increased cooking losses. Black-gram pasta, which is especially rich in soluble fibers, differed from faba and lentil pasta, with high springiness (0.85 vs. 0.75) and less loss during cooking. In comparison to a commercial cereal gluten-free pasta, all the legume pasta lost less material during cooking but was less cohesive and springy. Interestingly, due to their particular composition and structure, lentil and faba pasta released their starch more slowly than the commercial gluten-free pasta during the in-vitro digestion process. Anti-nutritional factors in legumes, such as trypsin inhibitory activity and α-galactosides were reduced by up to 82% and 73%, respectively, by pasta processing and cooking. However, these processing steps had a minor effect on phytic acid. This study demonstrates the advantages of using legumes for the production of gluten-free pasta with a low glycemic index and high nutritional quality.


Asunto(s)
Digestión , Fabaceae/química , Harina/análisis , Valor Nutritivo , Culinaria , Dieta Sin Gluten , Fibras de la Dieta/análisis , Glútenes/efectos adversos , Glútenes/química , Índice Glucémico , Humanos , Almidón/química , Almidón/farmacología , Triticum/efectos adversos , Triticum/química
4.
Food Funct ; 6(9): 2996-3005, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26190153

RESUMEN

Enrichment of durum wheat pasta with legume flour enhances their protein and essential amino acid content, especially lysine content. However, despite its nutritional potential, the addition of a legume alters the rheological properties of pasta. High temperature drying of pasta reduces this negative effect by strengthening its protein network. The aim of our study was to determine if these changes in the pasta structure alter its in vitro carbohydrate digestibility, in vivo glycemic, insulin and satiety responses. We also investigated if high temperature drying of pasta can reduce the well-known digestive discomfort associated with the consumption of legume grains. Fifteen healthy volunteers consumed three test meals: durum wheat pasta dried at a low temperature (control), and pasta enriched with 35% faba bean dried at a low and at a very high temperature. When enriched with 35% legume flour, pasta maintained its nutritionally valuable low glycemic and insulin index, despite its weaker protein network. Drying 35% faba bean pasta at a high temperature strengthened its protein network, and decreased its in vitro carbohydrate digestion with no further decrease in its in vivo glycemic or insulin index. Drying pasta at a very high temperature reduced digestive discomfort and enhanced self-reported satiety, and was not associated with a modification of energy intake in the following meal.


Asunto(s)
Glucemia/metabolismo , Aditivos Alimentarios/metabolismo , Insulina/metabolismo , Saciedad , Triticum/metabolismo , Vicia faba/metabolismo , Adulto , Digestión , Femenino , Harina/análisis , Aditivos Alimentarios/química , Manipulación de Alimentos , Calor , Humanos , Masculino , Temperatura , Triticum/química , Vicia faba/química , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA