Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
JBMR Plus ; 8(6): ziae050, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38699440

RESUMEN

Cherubism (OMIM 118400) is a rare craniofacial disorder in children characterized by destructive jawbone expansion due to the growth of inflammatory fibrous lesions. Our previous studies have shown that gain-of-function mutations in SH3 domain-binding protein 2 (SH3BP2) are responsible for cherubism and that a knock-in mouse model for cherubism recapitulates the features of cherubism, such as increased osteoclast formation and jawbone destruction. To date, SH3BP2 is the only gene identified to be responsible for cherubism. Since not all patients clinically diagnosed with cherubism had mutations in SH3BP2, we hypothesized that there may be novel cherubism genes and that these genes may play a role in jawbone homeostasis. Here, using whole exome sequencing, we identified homozygous loss-of-function variants in the opioid growth factor receptor like 1 (OGFRL1) gene in 2 independent autosomal recessive cherubism families from Syria and India. The newly identified pathogenic homozygous variants were not reported in any variant databases, suggesting that OGFRL1 is a novel gene responsible for cherubism. Single cell analysis of mouse jawbone tissue revealed that Ogfrl1 is highly expressed in myeloid lineage cells. We generated OGFRL1 knockout mice and mice carrying the Syrian frameshift mutation to understand the in vivo role of OGFRL1. However, neither mouse model recapitulated human cherubism or the phenotypes exhibited by SH3BP2 cherubism mice under physiological and periodontitis conditions. Unlike bone marrow-derived M-CSF-dependent macrophages (BMMs) carrying the SH3BP2 cherubism mutation, BMMs lacking OGFRL1 or carrying the Syrian mutation showed no difference in TNF-ɑ mRNA induction by LPS or TNF-ɑ compared to WT BMMs. Osteoclast formation induced by RANKL was also comparable. These results suggest that the loss-of-function effects of OGFRL1 in humans differ from those in mice and highlight the fact that mice are not always an ideal model for studying rare craniofacial bone disorders.

2.
STAR Protoc ; 4(1): 102116, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36853660

RESUMEN

In this protocol, we describe the generation of conditional alleles in mice using the DECAI (DEgradation based on Cre-regulated Artificial Intron) approach. We detail steps for the CRISPR-mediated insertion of the short DECAI cassette within exon 3 of Scyl1 and the functional validation of alleles at genomic, transcriptomic, and protein levels. This strategy simplifies the process of generating mice with conditional alleles. For complete details on the use and execution of this protocol, please refer to Cassidy et al. (2022).1.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Ratones , Animales , Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Alelos , Intrones/genética , Exones/genética
3.
Bone ; 167: 116612, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36379415

RESUMEN

Genetically modified mouse models have shaped our understanding of biological systems in both physiological and pathological conditions. For decades, mouse genome engineering has relied on transgenesis and spontaneous gene replacement in embryonic stem (ES) cells. While these technologies provided a wealth of knowledge, they remain imprecise and expensive to use. Recent advances in genome editing technologies such as the development of targetable nucleases, the improvement of delivery systems, and the simplification of targeting strategies now allow for the rapid, precise manipulation of the mouse genome. In this review article, we discuss novel methods and targeting strategies for the generation of mouse models for the study of bone and skeletal muscle biology.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Animales , Ratones , Animales Modificados Genéticamente , Terapia Genética , Ingeniería Genética/métodos
4.
Methods Enzymol ; 667: 775-812, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35525561

RESUMEN

Allelic series are extremely valuable genetic tools to study gene function and identify essential structural features of gene products. In mice, allelic series have been engineered using conventional gene targeting in embryonic stem cells or chemical mutagenesis. While these approaches have provided valuable information about the function of genes, they remain cumbersome. Modern approaches such as CRISPR-Cas9 technologies now allow for the precise and cost-effective generation of mouse models with specific mutations, facilitating the development of allelic series. Here, we describe procedures for the generation of three types of mutations used to dissect protein function in vivo using CRISPR-Cas9 technology. This step-by-step protocol describes the generation of missense mutations, large in-frame deletions, and insertions of genetic material using SCY1-like 1 (Scyl1) as a model gene.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Animales , Edición Génica/métodos , Marcación de Gen , Ratones , Mutagénesis , Tecnología
5.
Heliyon ; 8(12): e12630, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36619446

RESUMEN

Despite tremendous advances in genome editing technologies, generation of conditional alleles in mice has remained challenging. Recent studies in cells have successfully made use of short artificial introns to engineer conditional alleles. The approach consists of inserting a small cassette within an exon of a gene using CRISPR-Cas9 technology. The cassette, referred to as Artificial Intron version 4 (AIv4), contains sequences encoding a splice donor, essential intronic sequences flanked by loxP sites and a splice acceptor site. Under normal conditions, the artificial intron is removed by the splicing machinery, allowing for proper expression of the gene product. Following Cre-mediated recombination of the two loxP sites, the intron is disabled, and splicing can no longer occur. The remaining intronic sequences create a frameshift and early translation termination. Here we describe the application of this technology to engineer a conditional allele in mice using Scyl1 as a model gene. Insertion of the cassette occurred in 17% of edited mice obtained from pronuclear stage zygote microinjection. Mice homozygous for the insertion expressed SCYL1 at levels comparable to wild-type mice and showed no overt abnormalities associated with the loss of Scyl1 function, indicating the proper removal of the artificial intron. Inactivation of the cassette via Cre-mediated recombination in vivo occurred at high frequency, abrogated SCYL1 protein expression, and resulted in loss-of-function phenotypes. Our results broaden the applicability of this approach to engineering conditional alleles in mice.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...