Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
bioRxiv ; 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38826450

RESUMEN

Fibrosis drives end-organ damage in many diseases. However, clinical trials targeting individual upstream activators of fibroblasts, such as TGFß, have largely failed. Here, we target the leukemia inhibitory factor receptor (LIFR) as a "master amplifier" of multiple upstream activators of lung fibroblasts. In idiopathic pulmonary fibrosis (IPF), the most common fibrotic lung disease, we found that lung myofibroblasts had high LIF expression. Further, TGFß1, one of the key drivers of fibrosis, upregulated LIF expression in IPF fibroblasts. In vitro anti-LIFR antibody blocking on human IPF lung fibroblasts reduced induction of profibrotic genes downstream of TGFß1, IL-4 and IL-13. Further, siRNA silencing of LIFR in IPF precision cut lung slices reduced expression of fibrotic proteins. Together, we find that LIFR drives an autocrine positive feedback loop that amplifies and sustains pathogenic activation of IPF fibroblasts downstream of multiple external stimuli, implicating LIFR as a therapeutic target in fibrosis. Significance Statement: Fibroblasts have a central role in the pathogenesis of fibrotic diseases. However, due to in part to multiple profibrotic stimuli, targeting a single activator of fibroblasts, like TGFß, has not yielded successful clinical treatments. We hypothesized that a more effective therapeutic strategy is identifying a downstream "master amplifier" of a range of upstream profibrotic stimuli. This study identifies the leukemia inhibitory factor receptor (LIFR) on fibrotic lung fibroblasts amplifies multiple profibrotic stimuli, such as IL-13 and TGFß. Blocking LIFR reduced fibrosis in ex vivo lung tissue from patients with idiopathic pulmonary fibrosis (IPF). LIFR, acting as a master amplifier downstream of fibroblast activation, offers an alternative therapeutic strategy for fibrotic diseases.

2.
medRxiv ; 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38826461

RESUMEN

Rationale: Genetic variants and gene expression predict risk of chronic obstructive pulmonary disease (COPD), but their effect on COPD heterogeneity is unclear. Objectives: Define high-risk COPD subtypes using both genetics (polygenic risk score, PRS) and blood gene expression (transcriptional risk score, TRS) and assess differences in clinical and molecular characteristics. Methods: We defined high-risk groups based on PRS and TRS quantiles by maximizing differences in protein biomarkers in a COPDGene training set and identified these groups in COPDGene and ECLIPSE test sets. We tested multivariable associations of subgroups with clinical outcomes and compared protein-protein interaction networks and drug repurposing analyses between high-risk groups. Measurements and Main Results: We examined two high-risk omics-defined groups in non-overlapping test sets (n=1,133 NHW COPDGene, n=299 African American (AA) COPDGene, n=468 ECLIPSE). We defined "High activity" (low PRS/high TRS) and "severe risk" (high PRS/high TRS) subgroups. Participants in both subgroups had lower body-mass index (BMI), lower lung function, and alterations in metabolic, growth, and immune signaling processes compared to a low-risk (low PRS, low TRS) reference subgroup. "High activity" but not "severe risk" participants had greater prospective FEV 1 decline (COPDGene: -51 mL/year; ECLIPSE: - 40 mL/year) and their proteomic profiles were enriched in gene sets perturbed by treatment with 5-lipoxygenase inhibitors and angiotensin-converting enzyme (ACE) inhibitors. Conclusions: Concomitant use of polygenic and transcriptional risk scores identified clinical and molecular heterogeneity amongst high-risk individuals. Proteomic and drug repurposing analysis identified subtype-specific enrichment for therapies and suggest prior drug repurposing failures may be explained by patient selection.

4.
Heliyon ; 10(10): e31301, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38807864

RESUMEN

Chronic Obstructive Pulmonary Disease (COPD) is a heterogeneous, chronic inflammatory process of the lungs and, like other complex diseases, is caused by both genetic and environmental factors. Detailed understanding of the molecular mechanisms of complex diseases requires the study of the interplay among different biomolecular layers, and thus the integration of different omics data types. In this study, we investigated COPD-associated molecular mechanisms through a correlation-based network integration of lung tissue RNA-seq and DNA methylation data of COPD cases (n = 446) and controls (n = 346) derived from the Lung Tissue Research Consortium. First, we performed a SWIM-network based analysis to build separate correlation networks for RNA-seq and DNA methylation data for our case-control study population. Then, we developed a method to integrate the results into a coupled network of differentially expressed and differentially methylated genes to investigate their relationships across both molecular layers. The functional enrichment analysis of the nodes of the coupled network revealed a strikingly significant enrichment in Immune System components, both innate and adaptive, as well as immune-system component communication (interleukin and cytokine-cytokine signaling). Our analysis allowed us to reveal novel putative COPD-associated genes and to analyze their relationships, both at the transcriptomics and epigenomics levels, thus contributing to an improved understanding of COPD pathogenesis.

5.
bioRxiv ; 2024 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-38559226

RESUMEN

Long-read RNA sequencing has shed light on transcriptomic complexity, but questions remain about the functionality of downstream protein products. We introduce Biosurfer, a computational approach for comparing protein isoforms, while systematically tracking the transcriptional, splicing, and translational variations that underlie differences in the sequences of the protein products. Using Biosurfer, we analyzed the differences in 32,799 pairs of GENCODE annotated protein isoforms, finding a majority (70%) of variable N-termini are due to the alternative transcription start sites, while only 9% arise from 5' UTR alternative splicing. Biosurfer's detailed tracking of nucleotide-to-residue relationships helped reveal an uncommonly tracked source of single amino acid residue changes arising from the codon splits at junctions. For 17% of internal sequence changes, such split codon patterns lead to single residue differences, termed "ragged codons". Of variable C-termini, 72% involve splice- or intron retention-induced reading frameshifts. We found an unusual pattern of reading frame changes, in which the first frameshift is closely followed by a distinct second frameshift that restores the original frame, which we term a "snapback" frameshift. We analyzed long read RNA-seq-predicted proteome of a human cell line and found similar trends as compared to our GENCODE analysis, with the exception of a higher proportion of isoforms predicted to undergo nonsense-mediated decay. Biosurfer's comprehensive characterization of long-read RNA-seq datasets should accelerate insights of the functional role of protein isoforms, providing mechanistic explanation of the origins of the proteomic diversity driven by the alternative splicing. Biosurfer is available as a Python package at https://github.com/sheynkman-lab/biosurfer.

6.
bioRxiv ; 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38617310

RESUMEN

Chronic obstructive pulmonary disease (COPD) is the third leading cause of death worldwide. The primary causes of COPD are environmental, including cigarette smoking; however, genetic susceptibility also contributes to COPD risk. Genome-Wide Association Studies (GWASes) have revealed more than 80 genetic loci associated with COPD, leading to the identification of multiple COPD GWAS genes. However, the biological relationships between the identified COPD susceptibility genes are largely unknown. Genes associated with a complex disease are often in close network proximity, i.e. their protein products often interact directly with each other and/or similar proteins. In this study, we use affinity purification mass spectrometry (AP-MS) to identify protein interactions with HHIP , a well-established COPD GWAS gene which is part of the sonic hedgehog pathway, in two disease-relevant lung cell lines (IMR90 and 16HBE). To better understand the network neighborhood of HHIP , its proximity to the protein products of other COPD GWAS genes, and its functional role in COPD pathogenesis, we create HUBRIS, a protein-protein interaction network compiled from 8 publicly available databases. We identified both common and cell type-specific protein-protein interactors of HHIP. We find that our newly identified interactions shorten the network distance between HHIP and the protein products of several COPD GWAS genes, including DSP, MFAP2, TET2 , and FBLN5 . These new shorter paths include proteins that are encoded by genes involved in extracellular matrix and tissue organization. We found and validated interactions to proteins that provide new insights into COPD pathobiology, including CAVIN1 (IMR90) and TP53 (16HBE). The newly discovered HHIP interactions with CAVIN1 and TP53 implicate HHIP in response to oxidative stress.

7.
Hum Mol Genet ; 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38569558

RESUMEN

While many disease-associated single nucleotide polymorphisms (SNPs) are expression quantitative trait loci (eQTLs), a large proportion of genome-wide association study (GWAS) variants are of unknown function. Alternative polyadenylation (APA) plays an important role in posttranscriptional regulation by allowing genes to shorten or extend 3' untranslated regions (UTRs). We hypothesized that genetic variants that affect APA in lung tissue may lend insight into the function of respiratory associated GWAS loci. We generated alternative polyadenylation (apa) QTLs using RNA sequencing and whole genome sequencing on 1241 subjects from the Lung Tissue Research Consortium (LTRC) as part of the NHLBI TOPMed project. We identified 56 179 APA sites corresponding to 13 582 unique genes after filtering out APA sites with low usage. We found that a total of 8831 APA sites were associated with at least one SNP with q-value < 0.05. The genomic distribution of lead APA SNPs indicated that the majority are intronic variants (33%), followed by downstream gene variants (26%), 3' UTR variants (17%), and upstream gene variants (within 1 kb region upstream of transcriptional start site, 10%). APA sites in 193 genes colocalized with GWAS data for at least one phenotype. Genes containing the top APA sites associated with GWAS variants include membrane associated ring-CH-type finger 2 (MARCHF2), nectin cell adhesion molecule 2 (NECTIN2), and butyrophilin subfamily 3 member A2 (BTN3A2). Overall, these findings suggest that APA may be an important mechanism for genetic variants in lung function and chronic obstructive pulmonary disease (COPD).

8.
medRxiv ; 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38585732

RESUMEN

RATIONALE: Chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF) are debilitating diseases associated with divergent histopathological changes in the lungs. At present, due to cost and technical limitations, profiling cell types is not practical in large epidemiology cohorts (n>1000). Here, we used computational deconvolution to identify cell types in COPD and IPF lungs whose abundances and cell type-specific gene expression are associated with disease diagnosis and severity. METHODS: We analyzed lung tissue RNA-seq data from 1026 subjects (COPD, n=465; IPF, n=213; control, n=348) from the Lung Tissue Research Consortium. We performed RNA-seq deconvolution, querying thirty-eight discrete cell-type varieties in the lungs. We tested whether deconvoluted cell-type abundance and cell type-specific gene expression were associated with disease severity. RESULTS: The abundance score of twenty cell types significantly differed between IPF and control lungs. In IPF subjects, eleven and nine cell types were significantly associated with forced vital capacity (FVC) and diffusing capacity for carbon monoxide (DLCO), respectively. Aberrant basaloid cells, a rare cells found in fibrotic lungs, were associated with worse FVC and DLCO in IPF subjects, indicating that this aberrant epithelial population increased with disease severity. Alveolar type 1 and vascular endothelial (VE) capillary A were decreased in COPD lungs compared to controls. An increase in macrophages and classical monocytes was associated with lower DLCO in IPF and COPD subjects. In both diseases, lower non-classical monocytes and VE capillary A cells were associated with increased disease severity. Alveolar type 2 cells and alveolar macrophages had the highest number of genes with cell type-specific differential expression by disease severity in COPD and IPF. In IPF, genes implicated in the pathogenesis of IPF, such as matrix metallopeptidase 7, growth differentiation factor 15, and eph receptor B2, were associated with disease severity in a cell type-specific manner. CONCLUSION: Utilization of RNA-seq deconvolution enabled us to pinpoint cell types present in the lungs that are associated with the severity of COPD and IPF. This knowledge offers valuable insight into the alterations within tissues in more advanced illness, ultimately providing a better understanding of the underlying pathological processes that drive disease progression.

9.
bioRxiv ; 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38328226

RESUMEN

Multiple -omics (genomics, proteomics, etc.) profiles are commonly generated to gain insight into a disease or physiological system. Constructing multi-omics networks with respect to the trait(s) of interest provides an opportunity to understand relationships between molecular features but integration is challenging due to multiple data sets with high dimensionality. One approach is to use canonical correlation to integrate one or two omics types and a single trait of interest. However, these types of methods may be limited due to (1) not accounting for higher-order correlations existing among features, (2) computational inefficiency when extending to more than two omics data when using a penalty term-based sparsity method, and (3) lack of flexibility for focusing on specific correlations (e.g., omics-to-phenotype correlation versus omics-to-omics correlations). In this work, we have developed a novel multi-omics network analysis pipeline called Sparse Generalized Tensor Canonical Correlation Analysis Network Inference (SGTCCA-Net) that can effectively overcome these limitations. We also introduce an implementation to improve the summarization of networks for downstream analyses. Simulation and real-data experiments demonstrate the effectiveness of our novel method for inferring omics networks and features of interest.

10.
medRxiv ; 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38260473

RESUMEN

Chronic Obstructive Pulmonary Disease (COPD) is a complex, heterogeneous disease. Traditional subtyping methods generally focus on either the clinical manifestations or the molecular endotypes of the disease, resulting in classifications that do not fully capture the disease's complexity. Here, we bridge this gap by introducing a subtyping pipeline that integrates clinical and gene expression data with variational autoencoders. We apply this methodology to the COPDGene study, a large study of current and former smoking individuals with and without COPD. Our approach generates a set of vector embeddings, called Personalized Integrated Profiles (PIPs), that recapitulate the joint clinical and molecular state of the subjects in the study. Prediction experiments show that the PIPs have a predictive accuracy comparable to or better than other embedding approaches. Using trajectory learning approaches, we analyze the main trajectories of variation in the PIP space and identify five well-separated subtypes with distinct clinical phenotypes, expression signatures, and disease outcomes. Notably, these subtypes are more robust to data resampling compared to those identified using traditional clustering approaches. Overall, our findings provide new avenues to establish fine-grained associations between the clinical characteristics, molecular processes, and disease outcomes of COPD.

11.
Am J Respir Crit Care Med ; 209(3): 273-287, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37917913

RESUMEN

Rationale: Emphysema is a chronic obstructive pulmonary disease phenotype with important prognostic implications. Identifying blood-based biomarkers of emphysema will facilitate early diagnosis and development of targeted therapies. Objectives: To discover blood omics biomarkers for chest computed tomography-quantified emphysema and develop predictive biomarker panels. Methods: Emphysema blood biomarker discovery was performed using differential gene expression, alternative splicing, and protein association analyses in a training sample of 2,370 COPDGene participants with available blood RNA sequencing, plasma proteomics, and clinical data. Internal validation was conducted in a COPDGene testing sample (n = 1,016), and external validation was done in the ECLIPSE study (n = 526). Because low body mass index (BMI) and emphysema often co-occur, we performed a mediation analysis to quantify the effect of BMI on gene and protein associations with emphysema. Elastic net models with bootstrapping were also developed in the training sample sequentially using clinical, blood cell proportions, RNA-sequencing, and proteomic biomarkers to predict quantitative emphysema. Model accuracy was assessed by the area under the receiver operating characteristic curves for subjects stratified into tertiles of emphysema severity. Measurements and Main Results: Totals of 3,829 genes, 942 isoforms, 260 exons, and 714 proteins were significantly associated with emphysema (false discovery rate, 5%) and yielded 11 biological pathways. Seventy-four percent of these genes and 62% of these proteins showed mediation by BMI. Our prediction models demonstrated reasonable predictive performance in both COPDGene and ECLIPSE. The highest-performing model used clinical, blood cell, and protein data (area under the receiver operating characteristic curve in COPDGene testing, 0.90; 95% confidence interval, 0.85-0.90). Conclusions: Blood transcriptome and proteome-wide analyses revealed key biological pathways of emphysema and enhanced the prediction of emphysema.


Asunto(s)
Enfisema , Enfermedad Pulmonar Obstructiva Crónica , Enfisema Pulmonar , Humanos , Transcriptoma , Proteómica , Enfisema Pulmonar/genética , Enfisema Pulmonar/complicaciones , Biomarcadores , Perfilación de la Expresión Génica
12.
Am J Respir Crit Care Med ; 208(11): 1196-1205, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37788444

RESUMEN

Rationale: Constantly exposed to the external environment and mutagens such as tobacco smoke, human lungs have one of the highest somatic mutation rates among all human organs. However, the relationship of these mutations to lung disease and function is not known. Objectives: To identify the prevalence and significance of clonal somatic mutations in chronic lung diseases. Methods: We analyzed the clonal somatic mutations from 1,251 samples of normal and diseased noncancerous lung tissue RNA sequencing with paired whole-genome sequencing from the Lung Tissue Research Consortium. We examined the associations of somatic mutations with lung function, disease status, and computationally deconvoluted cell types in two of the most common diseases represented in our dataset, chronic obstructive pulmonary disease (COPD; 29%) and idiopathic pulmonary fibrosis (IPF; 13%). Measurements and Main Results: Clonal somatic mutational burden was associated with reduced lung function in both COPD and IPF. We identified an increased prevalence of clonal somatic mutations in individuals with IPF compared with normal control subjects and individuals with COPD independent of age and smoking status. IPF clonal somatic mutations were enriched in disease-related and airway epithelial-expressed genes such as MUC5B in IPF. Patients who were MUC5B risk variant carriers had increased odds of developing somatic mutations of MUC5B that were explained by increased expression of MUC5B. Conclusions: Our identification of an increased prevalence of clonal somatic mutation in diseased lung that correlates with airway epithelial gene expression and disease severity highlights for the first time the role of somatic mutational processes in lung disease genetics.


Asunto(s)
Fibrosis Pulmonar Idiopática , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Fibrosis Pulmonar Idiopática/genética , Fibrosis Pulmonar Idiopática/metabolismo , Pulmón/metabolismo , Mutación/genética , Fenómenos Fisiológicos Respiratorios , Enfermedad Pulmonar Obstructiva Crónica/epidemiología , Enfermedad Pulmonar Obstructiva Crónica/genética , Enfermedad Pulmonar Obstructiva Crónica/metabolismo
13.
Eur Respir J ; 62(3)2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37678951

RESUMEN

BACKGROUND: The lifetime risk of developing clinical COPD among smokers ranges from 13% to 22%. Identifying at-risk individuals who will develop overt disease in a reasonable timeframe may allow for early intervention. We hypothesised that readily available clinical and physiological variables could help identify ever-smokers at higher risk of developing chronic airflow limitation (CAL). METHODS: Among 2273 Lovelace Smokers' Cohort (LSC) participants, we included 677 (mean age 54 years) with normal spirometry at baseline and a minimum of three spirometries, each 1 year apart. Repeated spirometric measurements were used to determine incident CAL. Using logistic regression, demographics, anthropometrics, smoking history, modified Medical Research Council dyspnoea scale, St George's Respiratory Questionnaire, comorbidities and spirometry, we related variables obtained at baseline to incident CAL as defined by the Global Initiative for Chronic Obstructive Lung Disease and lower limit of normal criteria. The predictive model derived from the LSC was validated in subjects from the COPDGene study. RESULTS: Over 6.3 years, the incidence of CAL was 26 cases per 1000 person-years. The strongest independent predictors were forced expiratory volume in 1 s (FEV1)/forced vital capacity (FVC) <0.75, having smoked ≥30 pack-years, body mass index (BMI) ≤25 kg·m2 and symptoms of chronic bronchitis. Having all four predictors increased the risk of developing CAL over 6 years to 85% (area under the receiver operating characteristic curve (AUC ROC) 0.84, 95% CI 0.81-0.89). The prediction model showed similar results when applied to subjects in the COPDGene study with a follow-up period of 10 years (AUC ROC 0.77, 95% CI 0.72-0.81). CONCLUSION: In middle-aged ever-smokers, a simple predictive model with FEV1/FVC, smoking history, BMI and chronic bronchitis helps identify subjects at high risk of developing CAL.


Asunto(s)
Bronquitis Crónica , Enfermedad Pulmonar Obstructiva Crónica , Persona de Mediana Edad , Humanos , Bronquitis Crónica/diagnóstico , Bronquitis Crónica/epidemiología , Bronquitis Crónica/complicaciones , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Enfermedad Pulmonar Obstructiva Crónica/epidemiología , Volumen Espiratorio Forzado , Capacidad Vital , Fumar/epidemiología , Espirometría/métodos , Pulmón
14.
Am J Respir Crit Care Med ; 208(11): 1177-1195, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37756440

RESUMEN

Rationale: Despite the importance of inflammation in chronic obstructive pulmonary disease (COPD), the immune cell landscape in the lung tissue of patients with mild-moderate disease has not been well characterized at the single-cell and molecular level. Objectives: To define the immune cell landscape in lung tissue from patients with mild-moderate COPD at single-cell resolution. Methods: We performed single-cell transcriptomic, proteomic, and T-cell receptor repertoire analyses on lung tissue from patients with mild-moderate COPD (n = 5, Global Initiative for Chronic Obstructive Lung Disease I or II), emphysema without airflow obstruction (n = 5), end-stage COPD (n = 2), control (n = 6), or donors (n = 4). We validated in an independent patient cohort (N = 929) and integrated with the Hhip+/- murine model of COPD. Measurements and Main Results: Mild-moderate COPD lungs have increased abundance of two CD8+ T cell subpopulations: cytotoxic KLRG1+TIGIT+CX3CR1+ TEMRA (T effector memory CD45RA+) cells, and DNAM-1+CCR5+ T resident memory (TRM) cells. These CD8+ T cells interact with myeloid and alveolar type II cells via IFNG and have hyperexpanded T-cell receptor clonotypes. In an independent cohort, the CD8+KLRG1+ TEMRA cells are increased in mild-moderate COPD lung compared with control or end-stage COPD lung. Human CD8+KLRG1+ TEMRA cells are similar to CD8+ T cells driving inflammation in an aging-related murine model of COPD. Conclusions: CD8+ TEMRA cells are increased in mild-moderate COPD lung and may contribute to inflammation that precedes severe disease. Further study of these CD8+ T cells may have therapeutic implications for preventing severe COPD.


Asunto(s)
Linfocitos T CD8-positivos , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Animales , Ratones , Modelos Animales de Enfermedad , Proteómica , Pulmón/metabolismo , Inflamación , Receptores de Antígenos de Linfocitos T
15.
bioRxiv ; 2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37662385

RESUMEN

The sequencing of PCR amplicons is a core application of high-throughput sequencing technology. Using unique molecular identifiers (UMIs), individual amplified molecules can be sequenced to very high accuracy on an Illumina sequencer. However, Illumina sequencers have limited read length and are therefore restricted to sequencing amplicons shorter than 600bp unless using inefficient synthetic long-read approaches. Native long-read sequencers from Pacific Biosciences and Oxford Nanopore Technologies can, using consensus read approaches, match or exceed Illumina quality while achieving much longer read lengths. Using a circularization-based concatemeric consensus sequencing approach (R2C2) paired with UMIs (R2C2+UMI) we show that we can sequence ~550nt antibody heavy-chain (IGH) and ~1500nt 16S amplicons at accuracies up to and exceeding Q50 (<1 error in 100,0000 sequenced bases), which exceeds accuracies of UMI-supported Illumina paired sequencing as well as synthetic long-read approaches.

16.
Chronic Obstr Pulm Dis ; 10(4): 355-368, 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37413999

RESUMEN

Rationale: Chronic obstructive pulmonary disease (COPD) is characterized by pathologic changes in the airways, lung parenchyma, and persistent inflammation, but the links between lung structural changes and blood transcriptome patterns have not been fully described. Objections: The objective of this study was to identify novel relationships between lung structural changes measured by chest computed tomography (CT) and blood transcriptome patterns measured by blood RNA sequencing (RNA-seq). Methods: CT scan images and blood RNA-seq gene expression from 1223 participants in the COPD Genetic Epidemiology (COPDGene®) study were jointly analyzed using deep learning to identify shared aspects of inflammation and lung structural changes that we labeled image-expression axes (IEAs). We related IEAs to COPD-related measurements and prospective health outcomes through regression and Cox proportional hazards models and tested them for biological pathway enrichment. Results: We identified 2 distinct IEAs: IEAemph which captures an emphysema-predominant process with a strong positive correlation to CT emphysema and a negative correlation to forced expiratory volume in 1 second and body mass index (BMI); and IEAairway which captures an airway-predominant process with a positive correlation to BMI and airway wall thickness and a negative correlation to emphysema. Pathway enrichment analysis identified 29 and 13 pathways significantly associated with IEAemph and IEAairway, respectively (adjusted p<0.001). Conclusions: Integration of CT scans and blood RNA-seq data identified 2 IEAs that capture distinct inflammatory processes associated with emphysema and airway-predominant COPD.

17.
Am J Epidemiol ; 192(10): 1647-1658, 2023 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-37160347

RESUMEN

While variation in emphysema severity between patients with chronic obstructive pulmonary disease (COPD) is well-recognized, clinically applicable definitions of the emphysema-predominant disease (EPD) and non-emphysema-predominant disease (NEPD) subtypes have not been established. To study the clinical relevance of the EPD and NEPD subtypes, we tested the association of these subtypes with prospective decline in forced expiratory volume in 1 second (FEV1) and mortality among 3,427 subjects with Global Initiative for Chronic Obstructive Lung Disease (GOLD) spirometric grade 2-4 COPD at baseline in the Genetic Epidemiology of COPD (COPDGene) Study, an ongoing national multicenter study that started in 2007. NEPD was defined as airflow obstruction with less than 5% computed tomography (CT) quantitative densitometric emphysema at -950 Hounsfield units, and EPD was defined as airflow obstruction with 10% or greater CT emphysema. Mixed-effects models for FEV1 demonstrated larger average annual FEV1 loss in EPD subjects than in NEPD subjects (-10.2 mL/year; P < 0.001), and subtype-specific associations with FEV1 decline were identified. Cox proportional hazards models showed higher risk of mortality among EPD patients versus NEPD patients (hazard ratio = 1.46, 95% confidence interval: 1.34, 1.60; P < 0.001). To determine whether the NEPD/EPD dichotomy is captured by previously described COPDGene subtypes, we used logistic regression and receiver operating characteristic (ROC) curve analysis to predict NEPD/EPD membership using these previous subtype definitions. The analysis generally showed excellent discrimination, with areas under the ROC curve greater than 0.9. The NEPD and EPD COPD subtypes capture important aspects of COPD heterogeneity and are associated with different rates of disease progression and mortality.


Asunto(s)
Enfisema , Enfermedad Pulmonar Obstructiva Crónica , Enfisema Pulmonar , Humanos , Estudios Prospectivos , Enfermedad Pulmonar Obstructiva Crónica/complicaciones , Enfermedad Pulmonar Obstructiva Crónica/epidemiología , Enfermedad Pulmonar Obstructiva Crónica/genética , Enfisema Pulmonar/diagnóstico por imagen , Enfisema Pulmonar/complicaciones , Enfisema Pulmonar/epidemiología , Pulmón , Volumen Espiratorio Forzado , Enfisema/complicaciones , Progresión de la Enfermedad
18.
medRxiv ; 2023 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-37162978

RESUMEN

Background: Spirometry measures lung function by selecting the best of multiple efforts meeting pre-specified quality control (QC), and reporting two key metrics: forced expiratory volume in 1 second (FEV1) and forced vital capacity (FVC). We hypothesize that discarded submaximal and QC-failing data meaningfully contribute to the prediction of airflow obstruction and all-cause mortality. Methods: We evaluated volume-time spirometry data from the UK Biobank. We identified "best" spirometry efforts as those passing QC with the maximum FVC. "Discarded" efforts were either submaximal or failed QC. To create a combined representation of lung function we implemented a contrastive learning approach, Spirogram-based Contrastive Learning Framework (Spiro-CLF), which utilized all recorded volume-time curves per participant and applied different transformations (e.g. flow-volume, flow-time). In a held-out 20% testing subset we applied the Spiro-CLF representation of a participant's overall lung function to 1) binary predictions of FEV1/FVC < 0.7 and FEV1 Percent Predicted (FEV1PP) < 80%, indicative of airflow obstruction, and 2) Cox regression for all-cause mortality. Findings: We included 940,705 volume-time curves from 352,684 UK Biobank participants with 2-3 spirometry efforts per individual (66.7% with 3 efforts) and at least one QC-passing spirometry effort. Of all spirometry efforts, 24.1% failed QC and 37.5% were submaximal. Spiro-CLF prediction of FEV1/FVC < 0.7 utilizing discarded spirometry efforts had an Area under the Receiver Operating Characteristics (AUROC) of 0.981 (0.863 for FEV1PP prediction). Incorporating discarded spirometry efforts in all-cause mortality prediction was associated with a concordance index (c-index) of 0.654, which exceeded the c-indices from FEV1 (0.590), FVC (0.559), or FEV1/FVC (0.599) from each participant's single best effort. Interpretation: A contrastive learning model using raw spirometry curves can accurately predict lung function using submaximal and QC-failing efforts. This model also has superior prediction of all-cause mortality compared to standard lung function measurements. Funding: MHC is supported by NIH R01HL137927, R01HL135142, HL147148, and HL089856.BDH is supported by NIH K08HL136928, U01 HL089856, and an Alpha-1 Foundation Research Grant.DH is supported by NIH 2T32HL007427-41EKS is supported by NIH R01 HL152728, R01 HL147148, U01 HL089856, R01 HL133135, P01 HL132825, and P01 HL114501.PJC is supported by NIH R01HL124233 and R01HL147326.SPB is supported by NIH R01HL151421 and UH3HL155806.TY, FH, and CYM are employees of Google LLC.

19.
medRxiv ; 2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36865145

RESUMEN

Chronic Obstructive Pulmonary Disease (COPD) has a simple physiological diagnostic criterion but a wide range of clinical characteristics. The mechanisms underlying this variability in COPD phenotypes are unclear. To investigate the potential contribution of genetic variants to phenotypic heterogeneity, we examined the association of genome-wide associated lung function, COPD, and asthma variants with other phenotypes using phenome-wide association results derived in the UK Biobank. Our clustering analysis of the variants-phenotypes association matrix identified three clusters of genetic variants with different effects on white blood cell counts, height, and body mass index (BMI). To assess the potential clinical and molecular effects of these groups of variants, we investigated the association between cluster-specific genetic risk scores and phenotypes in the COPDGene cohort. We observed differences in steroid use, BMI, lymphocyte counts, chronic bronchitis, and differential gene and protein expression across the three genetic risk scores. Our results suggest that multi-phenotype analysis of obstructive lung disease-related risk variants may identify genetically driven phenotypic patterns in COPD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA