Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38083336

RESUMEN

Parkinson's disease (PD) is one of the most common neurodegenerative disorders worldwide. Current identification and monitoring of its motor symptoms depends on the clinical expertise. Repetitive finger tapping is one of the most common clinical maneuvers to assess for bradykinesia. Despite the increasing use of technology aids to quantitatively characterize the motor symptoms of PD, there is still a relative lack of clinical evidence to support their widespread use, particularly in low-resource settings. In this pilot study, we used a low-cost design prototype coupled with an inertial sensor is coupled to quantify the frequency of the finger tapping movements in four participants with PD. Repetitive finger tapping was performed using both hands before and after taking levodopa as part of their clinical treatment. The proposed 3D design allowed repetitive movements to be performed without issues. The maximum frequency of finger tapping was in the range of 0.1 to 4.3 Hz. Levodopa was associated with variable changes in the maximum frequency of finger tapping. This pilot study shows the feasibility for low-cost technology to quantitatively characterize repetitive movements in people living with PD.Clinical relevance- In this pilot study, a low-cost inertial sensor coupled to a design prototype was feasible to characterize the frequency of repetitive finger tapping movements in four participants with PD. This method could be used to quantitatively identify and monitor bradykinesia in people living with PD.


Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/complicaciones , Proyectos Piloto , Hipocinesia/complicaciones , Levodopa/uso terapéutico , Movimiento
2.
Artículo en Inglés | MEDLINE | ID: mdl-38083683

RESUMEN

Emergency mechanical ventilators developed during the pandemic were used to meet the high demand in intensive care units to care for COVID-19 patients. An example of such ventilators is Masi, developed in Peru and installed in more than 15 hospitals around the country. This study aimed to compare Masi's performance with other emergency mechanical ventilators manufactured during the covid-19 pandemic such as Neyün, Spiro Wave and a prototype developed by the Faculty of Engineering of the National University of Asuncion (FIUNA). Three configurations of a test lung were used, combining different values of resistance and compliance (C1, C2 and C3). Ventilators were set to volume-controlled ventilation with tidal volume = 400 mL, respiratory rate = 12 breaths/minute, and positive end-expiratory pressure (PEEP) = 8 cm H2O. These parameters were measured in a series of ten two-minute tests which then were evaluated through a two-way analysis of variance, considering the type of ventilator and test lung configuration as the two independent variables. For target values, MASI delivered VT that ranged from 319 to 432 ml (-20 to +8%), respiratory rate of 12 bpm, and PEEP from 8.4 to 9.5 cm H2O (+5 to +20%). In contrast, for instance, Neyün delivered VT that ranged from 199 to 543 ml (-50 to +35%) and PEEP from 7.05 to 9.21 cm H2O (--11 to +15%), with p<0.05. The analysis of variance showed that he differences between preset and delivered parameters were influenced by the type of ventilator and, significantly, by the test lung configuration.Clinical Relevance- This establishes the most advantageous conditions in which three emergency mechanical ventilators work and a quantitative perspective in this topic.


Asunto(s)
COVID-19 , Pandemias , Masculino , Humanos , COVID-19/epidemiología , COVID-19/terapia , Ventiladores Mecánicos , Respiración Artificial , Respiración con Presión Positiva
3.
Heliyon ; 9(9): e19586, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37810074

RESUMEN

Background: Limited supply of resources during the COVID-19 emergency encouraged the local development of the Masi mechanical ventilator (MV). Despite the efforts to promote Masi, adopting this innovation faced multiple obstacles, regardless of its performance. We explored the perceptions among healthcare personnel towards incorporating Masi to provide ventilatory support to COVID-19 patients during the second wave in Peru (January to June 2021). Methods: We conducted twelve in-depth virtual interviews. Topics included experience when handling Masi, the impact of the training received, confidence in the device, barriers perceived, and enablers identified. All participants provided verbal informed consent. Results: Most of the participants were male physicians. Participants belonged to seven hospitals that exhibited a wide range of healthcare capacities. Globally, the adoption of Masi MV was driven by the scarcity of ventilatory devices in the wards and reinforced by appropriate training and prompt technical support. Participants reported that Masi's structural and operational features played both advantages and disadvantages. Hospital infrastructure readiness, availability of commercial MVs, mistrust in its simple appearance, and resistance to change among healthcare personnel were perceived as barriers, while low-cost, prompt technical support and user-friendliness were valuable enablers. The first two enablers were observed in participants regardless of their attitude towards Masi. Despite the small number of participants for this qualitative study, it is important to note that the sample size was sufficient to reach saturation, as the topics discussed with participants became redundant and did not yield new information. Conclusions: The perceptions among healthcare personnel to incorporate Masi as a mechanical ventilator for COVID-19 patients showed that communication, training and experience, and peer encouragement were essential to secure its use and sustainability of the technology. A priori judgments and perceptions unrelated to the performance of the novel device were observed, and its proper management may define its further implementation. Altogether our study suggests that along with strengthening local technological development, strategies to improve their adoption process must be considered as early as possible in medical innovations.

4.
Sensors (Basel) ; 23(13)2023 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-37447709

RESUMEN

Cutaneous leishmaniasis (CL) is a neglected disease caused by an intracellular parasite of the Leishmania genus. CL lacks tools that allow its understanding and treatment follow-up. This article presents the use of metrical and optical tools for the analysis of the temporal evolution of treated skin ulcers caused by CL in an animal model. Leishmania braziliensis and L. panamensis were experimentally inoculated in golden hamsters, which were treated with experimental and commercial drugs. The temporal evolution was monitored by means of ulcers' surface areas, as well as absorption and scattering optical parameters. Ulcers' surface areas were obtained via photogrammetry, which is a procedure that allowed for 3D modeling of the ulcer using specialized software. Optical parameters were obtained from a spectroscopy study, representing the cutaneous tissue's biological components. A one-way ANOVA analysis was conducted to identify relationships between both the ulcers' areas and optical parameters. As a result, ulcers' surface areas were found to be related to the following optical parameters: epidermis thickness, collagen, keratinocytes, volume-fraction of blood, and oxygen saturation. This study is a proof of concept that shows that optical parameters could be associated with metrical ones, giving a more reliable concept during the assessment of a skin ulcer's healing.


Asunto(s)
Leishmaniasis Cutánea , Úlcera Cutánea , Cricetinae , Animales , Úlcera , Leishmaniasis Cutánea/tratamiento farmacológico , Piel , Úlcera Cutánea/tratamiento farmacológico , Úlcera Cutánea/parasitología , Mesocricetus , Modelos Animales de Enfermedad
5.
Obstet Gynecol ; 141(5): 937-948, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37103534

RESUMEN

OBJECTIVE: To estimate the diagnostic accuracy of blind ultrasound sweeps performed with a low-cost, portable ultrasound system by individuals with no prior formal ultrasound training to diagnose common pregnancy complications. METHODS: This is a single-center, prospective cohort study conducted from October 2020 to January 2022 among people with second- and third-trimester pregnancies. Nonspecialists with no prior formal ultrasound training underwent a brief training on a simple eight-step approach to performing a limited obstetric ultrasound examination that uses blind sweeps of a portable ultrasound probe based on external body landmarks. The sweeps were interpreted by five blinded maternal-fetal medicine subspecialists. Sensitivity, specificity, and positive and negative predictive values for blinded ultrasound sweep identification of pregnancy complications (fetal malpresentation, multiple gestations, placenta previa, and abnormal amniotic fluid volume) were compared with a reference standard ultrasonogram as the primary analysis. Kappa for agreement was also assessed. RESULTS: Trainees performed 194 blinded ultrasound examinations on 168 unique pregnant people (248 fetuses) at a mean of 28±5.85 weeks of gestation for a total of 1,552 blinded sweep cine clips. There were 49 ultrasonograms with normal results (control group) and 145 ultrasonograms with abnormal results with known pregnancy complications. In this cohort, the sensitivity for detecting a prespecified pregnancy complication was 91.7% (95% CI 87.2-96.2%) overall, with the highest detection rate for multiple gestations (100%, 95% CI 100-100%) and noncephalic presentation (91.8%, 95% CI 86.4-97.3%). There was high negative predictive value for placenta previa (96.1%, 95% CI 93.5-98.8%) and abnormal amniotic fluid volume (89.5%, 95% CI 85.3-93.6%). There was also substantial to perfect mean agreement for these same outcomes (range 87-99.6% agreement, Cohen κ range 0.59-0.91, P<.001 for all). CONCLUSION: Blind ultrasound sweeps of the gravid abdomen guided by an eight-step protocol using only external anatomic landmarks and performed by previously untrained operators with a low-cost, portable, battery-powered device had excellent sensitivity and specificity for high-risk pregnancy complications such as malpresentation, placenta previa, multiple gestations, and abnormal amniotic fluid volume, similar to results of a diagnostic ultrasound examination using a trained ultrasonographer and standard-of-care ultrasound machine. This approach has the potential to improve access to obstetric ultrasonography globally.


Asunto(s)
Placenta Previa , Complicaciones del Embarazo , Embarazo , Femenino , Humanos , Estudios Prospectivos , Complicaciones del Embarazo/diagnóstico por imagen , Ultrasonografía Prenatal/métodos , Embarazo Múltiple
6.
Front Health Serv ; 3: 1002208, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37077694

RESUMEN

Background: Pulmonary disease is a common cause of morbidity and mortality, but the majority of the people in the world lack access to diagnostic imaging for its assessment. We conducted an implementation assessment of a potentially sustainable and cost-effective model for delivery of volume sweep imaging (VSI) lung teleultrasound in Peru. This model allows image acquisition by individuals without prior ultrasound experience after only a few hours of training. Methods: Lung teleultrasound was implemented at 5 sites in rural Peru after a few hours of installation and staff training. Patients were offered free lung VSI teleultrasound examination for concerns of respiratory illness or research purposes. After ultrasound examination, patients were surveyed regarding their experience. Health staff and members of the implementation team also participated in separate interviews detailing their views of the teleultrasound system which were systematically analyzed for key themes. Results: Patients and staff rated their experience with lung teleultrasound as overwhelmingly positive. The lung teleultrasound system was viewed as a potential way to improve access to imaging and the health of rural communities. Detailed interviews with the implementation team revealed obstacles to implementation important for consideration such as gaps in lung ultrasound understanding. Conclusions: Lung VSI teleultrasound was successfully deployed to 5 health centers in rural Peru. Implementation assessment revealed enthusiasm for the system among members of the community along with important areas of consideration for future teleultrasound deployment. This system offers a potential means to increase access to imaging for pulmonary illness and improve the health of the global community.

7.
Phys Med Biol ; 68(10)2023 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-36996846

RESUMEN

Objective. The mechanical behaviour of soft tissue is influenced by its elastic and viscous characteristics. Therefore, the aim of this study was to develop a validated method to characterise the viscoelastic properties of soft tissues based on ultrasound elastography data.Approach. Plantar soft tissue was chosen as the tissue of interest, and gelatine-phantoms replicating its mechanical properties were manufactured for validation of the protocol. Both plantar soft tissue and the phantom were scanned using Reverberant shear wave ultrasound (US) elastography at 400-600 Hz. Shear wave speed was estimated using the US particle velocity data. The viscoelastic parameters were extracted by fitting the Young's modulus as a function of frequency derived from the constitutive equations of the eight rheological models (four classic and their fractional-derivative versions) to the shear wave dispersion data. Furthermore, stress-time functions derived from the eight rheological models were fitted to the phantom stress-relaxation data.Main results. The viscoelastic parameters estimated using elastography data based on the fractional-derivative (FD) models, compared to the classic models, were closer to those quantified using the mechanical test. In addition, the FD-Maxwell and FD-Kelvin-Voigt models showed to more effectively replicate the viscoelastic behaviour of the plantar soft tissue with minimum number of model parameters (R2= 0.72 for both models) . Hence the FD-KV and FD-Maxwell models can more effectively quantify the viscoelastic characteristics of the soft tissue compared to other models.Significance. In this study, a method for mechanical characterisation of the viscoelastic properties of soft tissue in ultrasound elastography was developed and fully validated. An investigation into the most valid rheological model and its applications in plantar soft tissue assessment were also presented. This proposed approach for the characterisation of viscous and elastic mechanical properties of soft tissue has implications in assessing the soft tissue function where those can be used as markers for diagnosis or prognosis of tissue status.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Diagnóstico por Imagen de Elasticidad/métodos , Módulo de Elasticidad , Ultrasonografía , Viscosidad , Reología , Fantasmas de Imagen
8.
HardwareX ; 13: e00383, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36568708

RESUMEN

We introduce an autonomous oxygen concentrator that was designed in Peru to fight the oxygen shortage produced worldwide as a consequence of the COVID-19 pandemic. Oxygen concentrators represent a suitable and favorable option for administering this gas at the patient's bedside in developing countries, especially when cylinders and tubed systems are unavailable or when access to them is restricted by lack of accessories, inadequate power supply, or shortage of qualified personnel. Our system uses a pressure swing adsorption technique to provide oxygen to patients at a flow rate of up to 15 l/min ± 1,5 l/min and a concentration of 93 % ± 3 %, offering robustness, safety and functionality. The quality measurements obtained from the validation process demonstrate repeatability and accuracy. The complete design files are provided in the source file repository to facilitate oxygen concentrator production in low and middle income countries, where access to oxygen is still a major problem even after the pandemic. Oxygen is part of the World Health Organization Model List of Essential Medicines and is perhaps the only medicine that has no substitute. This device can provide a reliable supply of oxygen for critically ill patients and improve their chances of survival.

9.
J Ultrasound Med ; 42(4): 817-832, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35802491

RESUMEN

OBJECTIVE: The majority of people in the world lack basic access to breast diagnostic imaging resulting in delay to diagnosis of breast cancer. In this study, we tested a volume sweep imaging (VSI) ultrasound protocol for evaluation of palpable breast lumps that can be performed by operators after minimal training without prior ultrasound experience as a means to increase accessibility to breast ultrasound. METHODS: Medical students without prior ultrasound experience were trained for less than 2 hours on the VSI breast ultrasound protocol. Patients presenting with palpable breast lumps for standard of care ultrasound examination were scanned by a trained medical student with the VSI protocol using a Butterfly iQ handheld ultrasound probe. Video clips of the VSI scan imaging were later interpreted by an attending breast imager. Results of VSI scan interpretation were compared to the same-day standard of care ultrasound examination. RESULTS: Medical students scanned 170 palpable lumps with the VSI protocol. There was 97% sensitivity and 100% specificity for a breast mass on VSI corresponding to 97.6% agreement with standard of care (Cohen's κ = 0.95, P < .0001). There was a detection rate of 100% for all cancer presenting as a sonographic mass. High agreement for mass characteristics between VSI and standard of care was observed, including 87% agreement on Breast Imaging-Reporting and Data System assessments (Cohen's κ = 0.82, P < .0001). CONCLUSIONS: Breast ultrasound VSI for palpable lumps offers a promising means to increase access to diagnostic imaging in underserved areas. This approach could decrease delay to diagnosis for breast cancer, potentially improving morbidity and mortality.


Asunto(s)
Neoplasias de la Mama , Femenino , Humanos , Neoplasias de la Mama/diagnóstico por imagen , Mama/diagnóstico por imagen , Ultrasonografía Mamaria/métodos , Mamografía , Ultrasonografía , Sensibilidad y Especificidad
10.
Ultrasound Q ; 39(3): 124-128, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36223486

RESUMEN

ABSTRACT: Obstetric volume sweep imaging (OB VSI) is a simple set of transducer movements guided by external body landmarks that can be taught to ultrasound-naive non-experts. This approach can increase access to ultrasound in rural/low-resources settings lacking trained sonographers. This study presents and evaluates a training program for OB VSI. Six trainees without previous formal ultrasound experience received a training program on the OB VSI protocol containing focused didactics and supervised live hands-on ultrasound scanning practice. Trainees then independently performed 194 OB VSI examinations on pregnancies >14 weeks with known prenatal ultrasound abnormalities. Images were reviewed by maternal-fetal medicine specialists for the primary outcome (protocol deviation rates) and secondary outcomes (examination quality and image quality). Protocol deviation was present in 25.8% of cases, but only 7.7% of these errors affected the diagnostic potential of the ultrasound. Error rate differences between trainees ranged from 8.6% to 53.8% ( P < 0.0001). Image quality was excellent or acceptable in 88.2%, and 96.4% had image quality capable of yielding a diagnostic interpretation. The frequency of protocol deviations decreased over time in the majority of trainees, demonstrating retention of training program over time. This brief OB VSI training program for ultrasound-naive non-experts yielded operators capable of producing high-quality images capable of diagnostic interpretation after 3 hours of training. This training program could be adapted for use by local community members in low-resource/rural settings to increase access to obstetric ultrasound.


Asunto(s)
Internado y Residencia , Obstetricia , Embarazo , Femenino , Humanos , Obstetricia/educación , Ultrasonografía Prenatal , Ultrasonografía , Curriculum
11.
BMJ Open ; 12(10): e061332, 2022 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-36192102

RESUMEN

OBJECTIVES: Pulmonary disease is a significant cause of morbidity and mortality in adults and children, but most of the world lacks diagnostic imaging for its assessment. Lung ultrasound is a portable, low-cost, and highly accurate imaging modality for assessment of pulmonary pathology including pneumonia, but its deployment is limited secondary to a lack of trained sonographers. In this study, we piloted a low-cost lung teleultrasound system in rural Peru during the COVID-19 pandemic using lung ultrasound volume sweep imaging (VSI) that can be operated by an individual without prior ultrasound training circumventing many obstacles to ultrasound deployment. DESIGN: Pilot study. SETTING: Study activities took place in five health centres in rural Peru. PARTICIPANTS: There were 213 participants presenting to rural health clinics. INTERVENTIONS: Individuals without prior ultrasound experience in rural Peru underwent brief training on how to use the teleultrasound system and perform lung ultrasound VSI. Subsequently, patients attending clinic were scanned by these previously ultrasound-naïve operators with the teleultrasound system. PRIMARY AND SECONDARY OUTCOME MEASURES: Radiologists examined the ultrasound imaging to assess its diagnostic value and identify any pathology. A random subset of 20% of the scans were analysed for inter-reader reliability. RESULTS: Lung VSI teleultrasound examinations underwent detailed analysis by two cardiothoracic attending radiologists. Of the examinations, 202 were rated of diagnostic image quality (94.8%, 95% CI 90.9% to 97.4%). There was 91% agreement between radiologists on lung ultrasound interpretation among a 20% sample of all examinations (κ=0.76, 95% CI 0.53 to 0.98). Radiologists were able to identify sequelae of COVID-19 with the predominant finding being B-lines. CONCLUSION: Lung VSI teleultrasound performed by individuals without prior training allowed diagnostic imaging of the lungs and identification of sequelae of COVID-19 infection. Deployment of lung VSI teleultrasound holds potential as a low-cost means to improve access to imaging around the world.


Asunto(s)
COVID-19 , Adulto , COVID-19/diagnóstico por imagen , Niño , Humanos , Pulmón/diagnóstico por imagen , Pandemias , Perú/epidemiología , Proyectos Piloto , Reproducibilidad de los Resultados , Ultrasonografía/métodos
12.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 957-961, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-36085701

RESUMEN

The MASI mechanical ventilator was developed in a state of emergency to meet the demand for ventilators caused by COVID-19. Although it has obtained positive results in its use with patients in intensive care units, not having an optimal quality non-invasive ventilation (NIV) modality prevents it from being used in the early treatment of patients, which has been shown to prevent admission to the ICU and reduce mortality. Therefore, the following study focuses on evaluating MASI's ability to provide NIV using different accessories in order to compare their performance and determine which one would work best with MASI, and under which conditions. To do this, the high-flow nasal cannula, facial mask, and ventilation helmet accessories were tested under different pressure parameter settings. The data was collected using a gas flow analyzer. After that, a statistical analysis of the results was carried out, which showed that the face mask is the best accessory to use for NIV with MASI, and that it performs with optimal accuracy and precision when the peak inspiratory pressure is set at a value lower than 25 cmH20. Clinical Relevance- This study presents an optimization of the non-invasive ventilation (NIV) modality of the MASI me-chanical ventilator by evaluating its performance with different accessories.


Asunto(s)
COVID-19 , Ventilación no Invasiva , Humanos , Máscaras , Respiración Artificial , Ventiladores Mecánicos
13.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 3903-3906, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-36085702

RESUMEN

The ongoing COVID-19 pandemic has already affected more than 300 million people worldwide. Medical imaging shortage affects an estimated of 4 billion people, especially in rural and remote areas (RAs), limiting diagnostic assessment of respiratory illness. Lung ultrasound imaging (LUS) together with volume sweep imaging (VSI) acquisition protocols have been successfully piloted as a solution for lung screening in RAs eliminating the need for trained operators and on-site radiologists. Nevertheless, this protocol requires the acquisition of 12 videos for 6 areas with both longitudinal and transverse positions of the transducer. Nonetheless, bandwidth limitations can hamper the transmission of these videos for remote interpretation. This work aimed to developed a stitching algorithm capable of generating a panoramic reconstruction of LUS cine clips. The results show reconstructions with minimal loss of information as 92.5% of the panoramic images conserved the presence of A-lines. These results show that LUS can be represented as an image without significantly compromising its quality. This can be useful to overcome bandwidth issues as well as improve the time on lung assessment of the patient.


Asunto(s)
COVID-19 , Pandemias , COVID-19/diagnóstico por imagen , Diagnóstico por Imagen , Humanos , Pulmón/diagnóstico por imagen , Ultrasonografía
14.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 3895-3898, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-36085802

RESUMEN

Reverberant Shear Wave Elastography (RSWE) is an ultrasound elastography technique that offers great advantages, however, current estimators generate underestimations and time-consuming issues. As well, the involvement of Deep Learning into the medical imaging field with new tools to assess complex problems, makes it a great candidate to serve as a new approach for a RSWE estimator. This work addresses the application of a Deep Neural Network (DNN) for the estimation of Shear Wave Speed (SWS) maps from particle velocity using numerically simulated data. The architecture of the proposed network is based on a U-Net, which works with a custom loss function specifically adopted for the reconstruction task. Four DNNs were trained using four different databases: clean, noisy, acquired at variable frequency, and noisy and acquired at variable frequency data. After the training of the DNNs, the predicted SWS maps were evaluated based on different metrics related to segmentation, regression and similarity of images. The model for clean data showed better results with a Mean Absolute Error (MAE) of 0.011, Mean Square Error(MSE) of 0.001, modified Intersection over Union (mIoU) of 98.4%, Peak Signal to Noise Ratio (PSNR) of 32.925 and a Structural Similarity Index Measure (SSIM) of 0.99, for 250 (size of Testing Sets); while the other models delivered SSIM in the range of 0.87 to 0.96. It was concluded that noisy and clean data could be effectively handled by the model, while the other ones still need enhancement. Clinical Relevance- This work is focused on the application of a Deep Learning approach to accurately asses the Shear Wave Speed in numerical simulations of Reverberant Shear Wave Elastography approach. This novel estimator could be useful for future clinical experiments specially with real time applications to determine the status of living tissue such as detection of malignant or benign tumors located in breast cervix prostate or skin and in the diagnosis of other pathologies such us liver fibrosis.


Asunto(s)
Aprendizaje Profundo , Diagnóstico por Imagen de Elasticidad , Simulación por Computador , Diagnóstico por Imagen de Elasticidad/métodos , Estudios de Factibilidad , Femenino , Humanos , Masculino , Fantasmas de Imagen
15.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 1512-1515, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-36086082

RESUMEN

The knowledge of the biomechanical properties of tissues is useful for different applications such as disease diagnosis and treatment monitoring. Reverberant Shear Wave Elastography (RSWE) is an approach that has reduced the restrictions on wave generation to characterize the shear wave velocity over a range of frequencies. This approach is based on the generation of a reverberant field that is generated by the reflections of waves from inhomogeneities and tissue boundaries that exist in the tissue. The Kelvin-Voigt Fractional Derivative model is commonly used to characterize elasticity and viscosity of soft tissue when using shear wave ultrasound elatography. These viscoelastic characteristics can be then validated using mechanical measurements (MM) such as stress relaxation. During RSWE acquisition, the effect of interface pressure, induced by pushing the probe on the skin through the gel pad, on the viscous and elastic characteristics of tissue can be investigated. However, the effect of interface pressure on the validity of the extracted viscous and elastic characteristics was not investigated before. Therefore, the purpose of this study was to compare the estimation of the viscoelastic parameters at different thickness of gel pad against the viscoelastic characteristics obtained from MM. The experiments were conducted in a tissue-mimicking phantom. The results confirm that the relaxed elastic constant (µ0) can be depreciated. In addition, a higher congruence was found in the viscous parameter (ηα) estimated at 6 and 7 mm. On the other hand, a difference in the order of fractional derivative (α) was found.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Elasticidad , Diagnóstico por Imagen de Elasticidad/métodos , Fantasmas de Imagen , Ultrasonografía , Viscosidad
16.
PLoS One ; 17(3): e0264774, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35239740

RESUMEN

The Covid-19 outbreak challenged health systems around the world to design and implement cost-effective devices produced locally to meet the increased demand of mechanical ventilators worldwide. This study evaluates the physiological responses of healthy swine maintained under volume- or pressure-controlled mechanical ventilation by a mechanical ventilator implemented to bring life-support by automating a resuscitation bag and closely controlling ventilatory parameters. Physiological parameters were monitored in eight sedated animals (t0) prior to inducing deep anaesthesia, and during the next six hours of mechanical ventilation (t1-7). Hemodynamic conditions were monitored periodically using a portable gas analyser machine (i.e. BEecf, carbonate, SaO2, lactate, pH, PaO2, PaCO2) and a capnometer (i.e. ETCO2). Electrocardiogram, echocardiography and lung ultrasonography were performed to detect in vivo alterations in these vital organs and pathological findings from necropsy were reported. The mechanical ventilator properly controlled physiological levels of blood biochemistry such as oxygenation parameters (PaO2, PaCO2, SaO2, ETCO2), acid-base equilibrium (pH, carbonate, BEecf), and perfusion of tissues (lactate levels). In addition, histopathological analysis showed no evidence of acute tissue damage in lung, heart, liver, kidney, or brain. All animals were able to breathe spontaneously after undergoing mechanical ventilation. These preclinical data, supports the biological safety of the medical device to move forward to further evaluation in clinical studies.


Asunto(s)
Reanimación Cardiopulmonar/instrumentación , Respiración Artificial/instrumentación , Ventiladores Mecánicos , Animales , Automatización , Análisis de los Gases de la Sangre , COVID-19/complicaciones , COVID-19/patología , COVID-19/fisiopatología , Femenino , Hemodinámica , Masculino , Respiración , SARS-CoV-2/fisiología , Porcinos
17.
PLoS One ; 17(2): e0262107, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35139093

RESUMEN

Ultrasound imaging is a vital component of high-quality Obstetric care. In rural and under-resourced communities, the scarcity of ultrasound imaging results in a considerable gap in the healthcare of pregnant mothers. To increase access to ultrasound in these communities, we developed a new automated diagnostic framework operated without an experienced sonographer or interpreting provider for assessment of fetal biometric measurements, fetal presentation, and placental position. This approach involves the use of a standardized volume sweep imaging (VSI) protocol based solely on external body landmarks to obtain imaging without an experienced sonographer and application of a deep learning algorithm (U-Net) for diagnostic assessment without a radiologist. Obstetric VSI ultrasound examinations were performed in Peru by an ultrasound operator with no previous ultrasound experience who underwent 8 hours of training on a standard protocol. The U-Net was trained to automatically segment the fetal head and placental location from the VSI ultrasound acquisitions to subsequently evaluate fetal biometry, fetal presentation, and placental position. In comparison to diagnostic interpretation of VSI acquisitions by a specialist, the U-Net model showed 100% agreement for fetal presentation (Cohen's κ 1 (p<0.0001)) and 76.7% agreement for placental location (Cohen's κ 0.59 (p<0.0001)). This corresponded to 100% sensitivity and specificity for fetal presentation and 87.5% sensitivity and 85.7% specificity for anterior placental location. The method also achieved a low relative error of 5.6% for biparietal diameter and 7.9% for head circumference. Biometry measurements corresponded to estimated gestational age within 2 weeks of those assigned by standard of care examination with up to 89% accuracy. This system could be deployed in rural and underserved areas to provide vital information about a pregnancy without a trained sonographer or interpreting provider. The resulting increased access to ultrasound imaging and diagnosis could improve disparities in healthcare delivery in under-resourced areas.


Asunto(s)
Placenta , Femenino , Humanos , Embarazo
18.
PLOS Digit Health ; 1(11): e0000148, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36812553

RESUMEN

Breast ultrasound provides a first-line evaluation for breast masses, but the majority of the world lacks access to any form of diagnostic imaging. In this pilot study, we assessed the combination of artificial intelligence (Samsung S-Detect for Breast) with volume sweep imaging (VSI) ultrasound scans to evaluate the possibility of inexpensive, fully automated breast ultrasound acquisition and preliminary interpretation without an experienced sonographer or radiologist. This study was conducted using examinations from a curated data set from a previously published clinical study of breast VSI. Examinations in this data set were obtained by medical students without prior ultrasound experience who performed VSI using a portable Butterfly iQ ultrasound probe. Standard of care ultrasound exams were performed concurrently by an experienced sonographer using a high-end ultrasound machine. Expert-selected VSI images and standard of care images were input into S-Detect which output mass features and classification as "possibly benign" and "possibly malignant." Subsequent comparison of the S-Detect VSI report was made between 1) the standard of care ultrasound report by an expert radiologist, 2) the standard of care ultrasound S-Detect report, 3) the VSI report by an expert radiologist, and 4) the pathological diagnosis. There were 115 masses analyzed by S-Detect from the curated data set. There was substantial agreement of the S-Detect interpretation of VSI among cancers, cysts, fibroadenomas, and lipomas to the expert standard of care ultrasound report (Cohen's κ = 0.73 (0.57-0.9 95% CI), p<0.0001), the standard of care ultrasound S-Detect interpretation (Cohen's κ = 0.79 (0.65-0.94 95% CI), p<0.0001), the expert VSI ultrasound report (Cohen's κ = 0.73 (0.57-0.9 95% CI), p<0.0001), and the pathological diagnosis (Cohen's κ = 0.80 (0.64-0.95 95% CI), p<0.0001). All pathologically proven cancers (n = 20) were designated as "possibly malignant" by S-Detect with a sensitivity of 100% and specificity of 86%. Integration of artificial intelligence and VSI could allow both acquisition and interpretation of ultrasound images without a sonographer and radiologist. This approach holds potential for increasing access to ultrasound imaging and therefore improving outcomes related to breast cancer in low- and middle- income countries.

19.
Ultrasound Med Biol ; 48(1): 35-46, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34702642

RESUMEN

Plantar soft tissue stiffness provides relevant information on biomechanical characteristics of the foot. Therefore, appropriate monitoring of foot elasticity could be useful for diagnosis, treatment or health care of people with complex pathologies such as a diabetic foot. In this work, the reliability of reverberant shear wave elastography (RSWE) applied to plantar soft tissue was investigated. Shear wave speed (SWS) measurements were estimated at the plantar soft tissue at the first metatarsal head, the third metatarsal head and the heel from both feet in five healthy volunteers. Experiments were repeated for a test-retest analysis with and without the use of gel pad using a mechanical excitation frequency range between 400 and 600 Hz. Statistical analysis was performed to evaluate the reliability of the SWS estimations. In addition, the results were compared against those obtained with a commercially available shear wave-based elastography technique, supersonic imaging (SSI). The results indicate a low coefficient of variation for test-retest experiments with gel pad (median: 5.59%) and without gel pad (median: 5.83%). Additionally, the values of the SWS measurements increase at higher frequencies (median values: 2.11 m/s at 400 Hz, 2.16 m/s at 450 Hz, 2.24 m/s at 500 Hz, 2.21 m/s at 550 Hz and 2.31 m/s at 600 Hz), consistent with previous reports at lower frequencies. The SWSs at the plantar soft tissue at the first metatarsal head, third metatarsal head and heel were found be significantly (p<0.05) different, with median values of 2.42, 2.16 and 2.03 m/s, respectively which indicates the ability of the method to differentiate between shear wave speeds at different anatomical locations. The results indicated better elastographic signal-to-noise ratios with RSWE compared to SSI because of the artifacts presented in the SWS generation. These preliminary results indicate that the RSWE approach can be used to estimate the plantar soft tissue elasticity, which may have great potential to better evaluate changes in biomechanical characteristics of the foot.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Elasticidad , Pie/diagnóstico por imagen , Talón/diagnóstico por imagen , Humanos , Reproducibilidad de los Resultados
20.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 3877-3881, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34892079

RESUMEN

Reverberant shear wave elastography (RSWE) has become a promising approach to quantifying soft tissues' viscoelastic properties by the propagating shear wave speed (SWS) estimation based on the particle velocity autocorrelation. In this work, three different practical settings were evaluated for the SWS estimation by numerical simulations of an isotropic, homogenous, and elastic medium: first, the 2D representation of the particle velocity, second, the spatial autocorrelation computation, and third, the selection of the curve fitting domain. We conclude that the 2D autocorrelation function using the Wiener-Khinchin theorem provides up to 127 times faster results than traditional autocorrelation methods. Additionally, we state that extracting the magnitude and phase from the Fourier transform of the temporal domain, applying the 2D-autocorrelation on a mobile square window sized at least two wavelengths, and fitting the monotonically decreasing part of the autocorrelation profile's central lobe results in more accurate (13.2% of bias) and precise (5.3% of CV) estimations than other practical settings.Clinical relevance- Affections in soft tissues' biomechanical properties are related to pathologies, such as tumor cancer, muscular degenerative diseases, or fibrosis. These changes are quantified by the SWS and its derived viscoelastic parameters. RSWE is a promising approach for their characterization. In this work, we evaluated alternative elections of practical settings within the methodology. Numerical simulations indicate they lead to faster and more reliable local SWS estimations than conventional settings.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Simulación por Computador , Análisis de Fourier , Corteza Insular , Fantasmas de Imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...