Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Cell Rep ; 43(5): 114174, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38700982

RESUMEN

Activating mutations in PIK3CA are frequently found in estrogen-receptor-positive (ER+) breast cancer, and the combination of the phosphatidylinositol 3-kinase (PI3K) inhibitor alpelisib with anti-ER inhibitors is approved for therapy. We have previously demonstrated that the PI3K pathway regulates ER activity through phosphorylation of the chromatin modifier KMT2D. Here, we discovered a methylation site on KMT2D, at K1330 directly adjacent to S1331, catalyzed by the lysine methyltransferase SMYD2. SMYD2 loss attenuates alpelisib-induced KMT2D chromatin binding and alpelisib-mediated changes in gene expression, including ER-dependent transcription. Knockdown or pharmacological inhibition of SMYD2 sensitizes breast cancer cells, patient-derived organoids, and tumors to PI3K/AKT inhibition and endocrine therapy in part through KMT2D K1330 methylation. Together, our findings uncover a regulatory crosstalk between post-translational modifications that fine-tunes KMT2D function at the chromatin. This provides a rationale for the use of SMYD2 inhibitors in combination with PI3Kα/AKT inhibitors in the treatment of ER+/PIK3CA mutant breast cancer.


Asunto(s)
Neoplasias de la Mama , Cromatina , N-Metiltransferasa de Histona-Lisina , Humanos , N-Metiltransferasa de Histona-Lisina/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Femenino , Cromatina/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Metilación/efectos de los fármacos , Línea Celular Tumoral , Animales , Ratones , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/genética , Receptores de Estrógenos/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos
2.
Am J Med Genet A ; 194(4): e63477, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37969032

RESUMEN

Germline pathogenic variants in the RAS/mitogen-activated protein kinase (MAPK) signaling pathway are the molecular cause of RASopathies, a group of clinically overlapping genetic syndromes. RASopathies constitute a wide clinical spectrum characterized by distinct facial features, short stature, predisposition to cancer, and variable anomalies in nearly all the major body systems. With increasing global recognition of these conditions, the 8th International RASopathies Symposium spotlighted global perspectives on clinical care and research, including strategies for building international collaborations and developing diverse patient cohorts in anticipation of interventional trials. This biannual meeting, organized by RASopathies Network, was held in a hybrid virtual/in-person format. The agenda featured emerging discoveries and case findings as well as progress in preclinical and therapeutic pipelines. Stakeholders including basic scientists, clinician-scientists, practitioners, industry representatives, patients, and family advocates gathered to discuss cutting edge science, recognize current gaps in knowledge, and hear from people with RASopathies about the experience of daily living. Presentations by RASopathy self-advocates and early-stage investigators were featured throughout the program to encourage a sustainable, diverse, long-term research and advocacy partnership focused on improving health and bringing treatments to people with RASopathies.


Asunto(s)
Síndrome de Costello , Displasia Ectodérmica , Cardiopatías Congénitas , Neoplasias , Síndrome de Noonan , Humanos , Proteínas ras/genética , Sistema de Señalización de MAP Quinasas/genética , Síndrome de Costello/genética , Neoplasias/genética , Displasia Ectodérmica/genética , Síndrome de Noonan/genética , Cardiopatías Congénitas/genética
3.
bioRxiv ; 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38077017

RESUMEN

RIT1 is a rare and understudied oncogene in lung cancer. Despite structural similarity to other RAS GTPase proteins such as KRAS, oncogenic RIT1 activity does not appear to be tightly regulated by nucleotide exchange or hydrolysis. Instead, there is a growing understanding that the protein abundance of RIT1 is important for its regulation and function. We previously identified the deubiquitinase USP9X as a RIT1 dependency in RIT1-mutant cells. Here, we demonstrate that both wild-type and mutant forms of RIT1 are substrates of USP9X. Depletion of USP9X leads to decreased RIT1 protein stability and abundance and resensitizes cells to EGFR tyrosine kinase inhibitors. Our work expands upon the current understanding of RIT1 protein regulation and presents USP9X as a key regulator of RIT1-driven oncogenic phenotypes.

4.
Sci Adv ; 9(28): eadf4766, 2023 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-37450595

RESUMEN

RIT1 is a RAS guanosine triphosphatase (GTPase) that regulates different aspects of signal transduction and is mutated in lung cancer, leukemia, and in the germline of individuals with Noonan syndrome. Pathogenic RIT1 proteins promote mitogen-activated protein kinase (MAPK) hyperactivation; however, this mechanism remains poorly understood. Here, we show that RAF kinases are direct effectors of membrane-bound mutant RIT1 necessary for MAPK activation. We identify critical residues in RIT1 that facilitate interaction with membrane lipids and show that these are necessary for association with RAF kinases and MAPK activation. Although mutant RIT1 binds to RAF kinases directly, it fails to activate MAPK signaling in the absence of classical RAS proteins. Consistent with aberrant RAF/MAPK activation as a driver of disease, we show that pathway inhibition alleviates cardiac hypertrophy in a mouse model of RIT1 mutant Noonan syndrome. These data shed light on the function of pathogenic RIT1 and identify avenues for therapeutic intervention.


Asunto(s)
Neoplasias Pulmonares , Síndrome de Noonan , Animales , Ratones , Síndrome de Noonan/genética , Síndrome de Noonan/metabolismo , Síndrome de Noonan/patología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Cardiomegalia/genética , Transducción de Señal
5.
J Biol Chem ; 299(6): 104789, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37149146

RESUMEN

Sprouty-related EVH-1 domain-containing (SPRED) proteins are a family of proteins that negatively regulate the RAS-Mitogen-Activated Protein Kinase (MAPK) pathway, which is involved in the regulation of the mitogenic response and cell proliferation. However, the mechanism by which these proteins affect RAS-MAPK signaling has not been elucidated. Patients with mutations in SPRED give rise to unique disease phenotypes; thus, we hypothesized that distinct interactions across SPRED proteins may account for alternative nodes of regulation. To characterize the SPRED interactome and evaluate how members of the SPRED family function through unique binding partners, we performed affinity purification mass spectrometry. We identified 90-kDa ribosomal S6 kinase 2 (RSK2) as a specific interactor of SPRED2 but not SPRED1 or SPRED3. We identified that the N-terminal kinase domain of RSK2 mediates the interaction between amino acids 123 to 201 of SPRED2. Using X-ray crystallography, we determined the structure of the SPRED2-RSK2 complex and identified the SPRED2 motif, F145A, as critical for interaction. We found that the formation of this interaction is regulated by MAPK signaling events. We also find that this interaction between SPRED2 and RSK2 has functional consequences, whereby the knockdown of SPRED2 resulted in increased phosphorylation of RSK substrates, YB1 and CREB. Furthermore, SPRED2 knockdown hindered phospho-RSK membrane and nuclear subcellular localization. We report that disruption of the SPRED2-RSK complex has effects on RAS-MAPK signaling dynamics. Our analysis reveals that members of the SPRED family have unique protein binding partners and describes the molecular and functional determinants of SPRED2-RSK2 complex dynamics.


Asunto(s)
Proteínas Quinasas Activadas por Mitógenos , Proteínas Represoras , Proteínas Quinasas S6 Ribosómicas 90-kDa , Transducción de Señal , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosforilación , Proteínas Quinasas S6 Ribosómicas 90-kDa/química , Proteínas Quinasas S6 Ribosómicas 90-kDa/genética , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Transducción de Señal/genética , Humanos , Línea Celular , Dominios Proteicos , Proteínas Represoras/química , Proteínas Represoras/metabolismo , Técnicas de Silenciamiento del Gen , Transporte de Proteínas/genética , Unión Proteica , Estructura Terciaria de Proteína , Modelos Moleculares , Neurofibromina 1/metabolismo
7.
Proc Natl Acad Sci U S A ; 119(31): e2123467119, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35881788

RESUMEN

Capicua (Cic) proteins are conserved HMG-box transcriptional repressors that control receptor tyrosine kinase (RTK) signaling responses and are implicated in human neurological syndromes and cancer. While Cic is known to exist as short (Cic-S) and long (Cic-L) isoforms with identical HMG-box and associated core regions but distinct N termini, most previous studies have focused on Cic-S, leaving the function of Cic-L unexplored. Here we show that Cic-L acts in two capacities during Drosophila oogenesis: 1) as a canonical sensor of RTK signaling in somatic follicle cells, and 2) as a regulator of postmitotic growth in germline nurse cells. In these latter cells, Cic-L behaves as a temporal signal that terminates endoreplicative growth before they dump their contents into the oocyte. We show that Cic-L is necessary and sufficient for nurse cell endoreplication arrest and induces both stabilization of CycE and down-regulation of Myc. Surprisingly, this function depends mainly on the Cic-L-specific N-terminal module, which is capable of acting independently of the Cic HMG-box-containing core. Mirroring these observations, basal metazoans possess truncated Cic-like proteins composed only of Cic-L N-terminal sequences, suggesting that this module plays unique, ancient roles unrelated to the canonical function of Cic.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Proteínas HMGB , Oogénesis , Proteínas Represoras , Animales , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiología , Drosophila melanogaster/fisiología , Proteínas HMGB/genética , Proteínas HMGB/fisiología , Oogénesis/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/fisiología
8.
Cancer Discov ; 12(10): 2434-2453, 2022 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-35904492

RESUMEN

Recently, screens for mediators of resistance to FLT3 and ABL kinase inhibitors in leukemia resulted in the discovery of LZTR1 as an adapter of a Cullin-3 RING E3 ubiquitin ligase complex responsible for the degradation of RAS GTPases. In parallel, dysregulated LZTR1 expression via aberrant splicing and mutations was identified in clonal hematopoietic conditions. Here we identify that loss of LZTR1, or leukemia-associated mutants in the LZTR1 substrate and RAS GTPase RIT1 that escape degradation, drives hematopoietic stem cell (HSC) expansion and leukemia in vivo. Although RIT1 stabilization was sufficient to drive hematopoietic transformation, transformation mediated by LZTR1 loss required MRAS. Proteolysis targeting chimeras (PROTAC) against RAS or reduction of GTP-loaded RAS overcomes LZTR1 loss-mediated resistance to FLT3 inhibitors. These data reveal proteolysis of noncanonical RAS proteins as novel regulators of HSC self-renewal, define the function of RIT1 and LZTR1 mutations in leukemia, and identify means to overcome drug resistance due to LZTR1 downregulation. SIGNIFICANCE: Here we identify that impairing proteolysis of the noncanonical RAS GTPases RIT1 and MRAS via LZTR1 downregulation or leukemia-associated mutations stabilizing RIT1 enhances MAP kinase activation and drives leukemogenesis. Reducing the abundance of GTP-bound KRAS and NRAS overcomes the resistance to FLT3 kinase inhibitors associated with LZTR1 downregulation in leukemia. This article is highlighted in the In This Issue feature, p. 2221.


Asunto(s)
Leucemia , Proteínas ras , Proteínas Cullin/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Leucemia/genética , Inhibidores de Proteínas Quinasas/farmacología , Proteolisis , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Factores de Transcripción/genética , Proteínas ras/genética
9.
Elife ; 112022 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-35467524

RESUMEN

RAS GTPases are highly conserved proteins involved in the regulation of mitogenic signaling. We have previously described a novel Cullin 3 RING E3 ubiquitin ligase complex formed by the substrate adaptor protein LZTR1 that binds, ubiquitinates, and promotes proteasomal degradation of the RAS GTPase RIT1. In addition, others have described that this complex is also responsible for the ubiquitination of classical RAS GTPases. Here, we have analyzed the phenotypes of Lztr1 loss-of-function mutants in both fruit flies and mice and have demonstrated a biochemical preference for their RIT1 orthologs. Moreover, we show that Lztr1 is haplosufficient in mice and that embryonic lethality of the homozygous null allele can be rescued by deletion of Rit1. Overall, our results indicate that, in model organisms, RIT1 orthologs are the preferred substrates of LZTR1.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proteínas de Drosophila , Factores de Transcripción , Proteínas ras , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Proliferación Celular , Proteínas de Drosophila/genética , Ratones , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Ubiquitinación , Proteínas ras/metabolismo
10.
Cancer Res ; 82(12): 2269-2280, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35442400

RESUMEN

The phosphoinositide 3-kinase (PI3K) pathway regulates proliferation, survival, and metabolism and is frequently activated across human cancers. A comprehensive elucidation of how this signaling pathway controls transcriptional and cotranscriptional processes could provide new insights into the key functions of PI3K signaling in cancer. Here, we undertook a transcriptomic approach to investigate genome-wide gene expression and transcription factor activity changes, as well as splicing and isoform usage dynamics, downstream of PI3K. These analyses uncovered widespread alternatively spliced isoforms linked to proliferation, metabolism, and splicing in PIK3CA-mutant cells, which were reversed by inhibition of PI3Kα. Analysis of paired tumor biopsies from patients with PIK3CA-mutated breast cancer undergoing treatment with PI3Kα inhibitors identified widespread splicing alterations that affect specific isoforms in common with the preclinical models, and these alterations, namely PTK2/FRNK and AFMID isoforms, were validated as functional drivers of cancer cell growth or migration. Mechanistically, isoform-specific splicing factors mediated PI3K-dependent RNA splicing. Treatment with splicing inhibitors rendered breast cancer cells more sensitive to the PI3Kα inhibitor alpelisib, resulting in greater growth inhibition than alpelisib alone. This study provides the first comprehensive analysis of widespread splicing alterations driven by oncogenic PI3K in breast cancer. The atlas of PI3K-mediated splicing programs establishes a key role for the PI3K pathway in regulating splicing, opening new avenues for exploiting PI3K signaling as a therapeutic vulnerability in breast cancer. SIGNIFICANCE: Transcriptomic analysis reveals a key role for the PI3K pathway in regulating RNA splicing, uncovering new mechanisms by which PI3K regulates proliferation and metabolism in breast cancer. See related commentary by Claridge and Hopkins, p. 2216.


Asunto(s)
Neoplasias de la Mama , Fosfatidilinositol 3-Quinasas , Neoplasias de la Mama/patología , Carcinogénesis/genética , Línea Celular Tumoral , Fosfatidilinositol 3-Quinasa Clase I/genética , Femenino , Humanos , Fosfatidilinositol 3-Quinasa/genética , Fosfatidilinositol 3-Quinasa/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Empalme del ARN/genética , Transcriptoma
11.
Am J Med Genet A ; 188(6): 1915-1927, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35266292

RESUMEN

RASopathies are a group of genetic disorders that are caused by genes that affect the canonical Ras/mitogen-activated protein kinase (MAPK) signaling pathway. Despite tremendous progress in understanding the molecular consequences of these genetic anomalies, little movement has been made in translating these findings to the clinic. This year, the seventh International RASopathies Symposium focused on expanding the research knowledge that we have gained over the years to enhance new discoveries in the field, ones that we hope can lead to effective therapeutic treatments. Indeed, for the first time, research efforts are finally being translated to the clinic, with compassionate use of Ras/MAPK pathway inhibitors for the treatment of RASopathies. This biannual meeting, organized by the RASopathies Network, brought together basic scientists, clinicians, clinician scientists, patients, advocates, and their families, as well as representatives from pharmaceutical companies and the National Institutes of Health. A history of RASopathy gene discovery, identification of new disease genes, and the latest research, both at the bench and in the clinic, were discussed.


Asunto(s)
Síndrome de Costello , Síndrome de Noonan , Síndrome de Costello/genética , Humanos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Síndrome de Noonan/genética , Transducción de Señal , Proteínas ras/genética , Proteínas ras/metabolismo
12.
Nat Metab ; 4(3): 327-343, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35288722

RESUMEN

Reciprocal interactions between endothelial cells (ECs) and adipocytes are fundamental to maintain white adipose tissue (WAT) homeostasis, as illustrated by the activation of angiogenesis upon WAT expansion, a process that is impaired in obesity. However, the molecular mechanisms underlying the crosstalk between ECs and adipocytes remain poorly understood. Here, we show that local production of polyamines in ECs stimulates adipocyte lipolysis and regulates WAT homeostasis in mice. We promote enhanced cell-autonomous angiogenesis by deleting Pten in the murine endothelium. Endothelial Pten loss leads to a WAT-selective phenotype, characterized by reduced body weight and adiposity in pathophysiological conditions. This phenotype stems from enhanced fatty acid ß-oxidation in ECs concomitant with a paracrine lipolytic action on adipocytes, accounting for reduced adiposity. Combined analysis of murine models, isolated ECs and human specimens reveals that WAT lipolysis is mediated by mTORC1-dependent production of polyamines by ECs. Our results indicate that angiocrine metabolic signals are important for WAT homeostasis and organismal metabolism.


Asunto(s)
Adiposidad , Células Endoteliales , Animales , Células Endoteliales/metabolismo , Ratones , Ratones Endogámicos C57BL , Obesidad/metabolismo , Poliaminas
13.
Biochim Biophys Acta Mol Basis Dis ; 1868(5): 166366, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35158019

RESUMEN

Understanding the molecular mechanisms that underlie different human pathologies is necessary to develop novel therapeutic strategies. An emerging mechanism of pathogenesis in many genetic disorders is the dysregulation of protein degradation, which leads to the accumulation of proteins that are responsible for the disease phenotype. Among the different cellular pathways that regulate active proteolysis, the Cullin RING E3 ligases represent an important group of sophisticated enzymatic complexes that mediate substrate ubiquitination through the interaction with specific adaptors. However, pathogenic variants in these adaptors affect the physiological ubiquitination of their substrates. This review discusses our current understanding of this emerging field.


Asunto(s)
Proteínas Cullin , Proteínas Cullin/genética , Proteínas Cullin/metabolismo , Proteolisis , Ubiquitinación
14.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34380736

RESUMEN

RAS proteins are molecular switches that interact with effector proteins when bound to guanosine triphosphate, stimulating downstream signaling in response to multiple stimuli. Although several canonical downstream effectors have been extensively studied and tested as potential targets for RAS-driven cancers, many of these remain poorly characterized. In this study, we undertook a biochemical and structural approach to further study the role of Sin1 as a RAS effector. Sin1 interacted predominantly with KRAS isoform 4A in cells through an atypical RAS-binding domain that we have characterized by X-ray crystallography. Despite the essential role of Sin1 in the assembly and activity of mTORC2, we find that the interaction with RAS is not required for these functions. Cells and mice expressing a mutant of Sin1 that is unable to bind RAS are proficient for activation and assembly of mTORC2. Our results suggest that Sin1 is a bona fide RAS effector that regulates downstream signaling in an mTORC2-independent manner.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Regulación de la Expresión Génica/fisiología , Células HEK293 , Humanos , Espectrometría de Masas , Diana Mecanicista del Complejo 2 de la Rapamicina/genética , Modelos Moleculares , Conformación Proteica , Isoformas de Proteínas , Proteínas Proto-Oncogénicas p21(ras)/genética , Transducción de Señal
15.
Curr Biol ; 31(17): 3915-3924.e9, 2021 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-34237269

RESUMEN

The spindle assembly checkpoint (SAC) functions as a sensor of unattached kinetochores that delays mitotic progression into anaphase until proper chromosome segregation is guaranteed.1,2 Disruptions to this safety mechanism lead to genomic instability and aneuploidy, which serve as the genetic cause of embryonic demise, congenital birth defects, intellectual disability, and cancer.3,4 However, despite the understanding of the fundamental mechanisms that control the SAC, it remains unknown how signaling pathways directly interact with and regulate the mitotic checkpoint activity. In response to extracellular stimuli, a diverse network of signaling pathways involved in cell growth, survival, and differentiation are activated, and this process is prominently regulated by the Ras family of small guanosine triphosphatases (GTPases).5 Here we show that RIT1, a Ras-related GTPase that regulates cell survival and stress response,6 is essential for timely progression through mitosis and proper chromosome segregation. RIT1 dissociates from the plasma membrane (PM) during mitosis and interacts directly with SAC proteins MAD2 and p31comet in a process that is regulated by cyclin-dependent kinase 1 (CDK1) activity. Furthermore, pathogenic levels of RIT1 silence the SAC and accelerate transit through mitosis by sequestering MAD2 from the mitotic checkpoint complex (MCC). Moreover, SAC suppression by pathogenic RIT1 promotes chromosome segregation errors and aneuploidy. Our results highlight a unique function of RIT1 compared to other Ras GTPases and elucidate a direct link between a signaling pathway and the SAC through a novel regulatory mechanism.


Asunto(s)
Puntos de Control de la Fase M del Ciclo Celular , Huso Acromático , Proteínas de Ciclo Celular/metabolismo , Cinetocoros/metabolismo , Proteínas Mad2/genética , Mitosis , Huso Acromático/metabolismo , Proteínas ras/metabolismo
16.
Cell ; 184(13): 3349-3351, 2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-34171315
17.
Nat Genet ; 53(5): 707-718, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33846634

RESUMEN

Most eukaryotes harbor two distinct pre-mRNA splicing machineries: the major spliceosome, which removes >99% of introns, and the minor spliceosome, which removes rare, evolutionarily conserved introns. Although hypothesized to serve important regulatory functions, physiologic roles of the minor spliceosome are not well understood. For example, the minor spliceosome component ZRSR2 is subject to recurrent, leukemia-associated mutations, yet functional connections among minor introns, hematopoiesis and cancers are unclear. Here, we identify that impaired minor intron excision via ZRSR2 loss enhances hematopoietic stem cell self-renewal. CRISPR screens mimicking nonsense-mediated decay of minor intron-containing mRNA species converged on LZTR1, a regulator of RAS-related GTPases. LZTR1 minor intron retention was also discovered in the RASopathy Noonan syndrome, due to intronic mutations disrupting splicing and diverse solid tumors. These data uncover minor intron recognition as a regulator of hematopoiesis, noncoding mutations within minor introns as potential cancer drivers and links among ZRSR2 mutations, LZTR1 regulation and leukemias.


Asunto(s)
Predisposición Genética a la Enfermedad , Enfermedades Hematológicas/genética , Intrones/genética , Neoplasias/genética , Animales , Secuencia de Bases , Sistemas CRISPR-Cas/genética , Autorrenovación de las Células , Transformación Celular Neoplásica/patología , Células Clonales , Femenino , Genoma Humano , Enfermedades Hematológicas/patología , Células Madre Hematopoyéticas/metabolismo , Humanos , Masculino , Ratones Noqueados , Síndrome de Noonan/genética , Linaje , ARN/metabolismo , Empalme del ARN/genética , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Bazo/patología , Factores de Transcripción/genética
18.
Cancer Cell ; 39(5): 581-582, 2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-33930314
20.
Cancer Res ; 81(9): 2470-2480, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33685991

RESUMEN

PI3Kα inhibitors have shown clinical activity in PIK3CA-mutated estrogen receptor-positive (ER+) patients with breast cancer. Using whole genome CRISPR/Cas9 sgRNA knockout screens, we identified and validated several negative regulators of mTORC1 whose loss confers resistance to PI3Kα inhibition. Among the top candidates were TSC1, TSC2, TBC1D7, AKT1S1, STK11, MARK2, PDE7A, DEPDC5, NPRL2, NPRL3, C12orf66, SZT2, and ITFG2. Loss of these genes invariably results in sustained mTOR signaling under pharmacologic inhibition of the PI3K-AKT pathway. Moreover, resistance could be prevented or overcome by mTOR inhibition, confirming the causative role of sustained mTOR activity in limiting the sensitivity to PI3Kα inhibition. Cumulatively, genomic alterations affecting these genes are identified in about 15% of PIK3CA-mutated breast tumors and appear to be mutually exclusive. This study improves our understanding of the role of mTOR signaling restoration in leading to resistance to PI3Kα inhibition and proposes therapeutic strategies to prevent or revert this resistance. SIGNIFICANCE: These findings show that genetic lesions of multiple negative regulators of mTORC1 could limit the efficacy of PI3Kα inhibitors in breast cancer, which may guide patient selection strategies for future clinical trials.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Fosfatidilinositol 3-Quinasa Clase I/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Mutación con Pérdida de Función , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3/administración & dosificación , Transducción de Señal/genética , Tiazoles/administración & dosificación , Animales , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Supervivencia Celular/efectos de los fármacos , Fosfatidilinositol 3-Quinasa Clase I/antagonistas & inhibidores , Estudios de Cohortes , Femenino , Células HEK293 , Humanos , Células MCF-7 , Ratones , Serina-Treonina Quinasas TOR/metabolismo , Transducción Genética , Carga Tumoral/efectos de los fármacos , Carga Tumoral/genética , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...