Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 16(6): 2384-9, 2014 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-24352729

RESUMEN

In this paper we demonstrate that layer-by-layer (LbL) films of polyamidoamine (PAMAM) dendrimers and single-walled carbon nanotubes (SWCNTs) are efficient for controlling the morphology of electrogenerated cobalt (Co) and the platinum-cobalt (PtCo) alloy. While Co grew to the micrometer scale and poorly covered the ITO substrate, with the LbL matrix it was kept in the nanoscale regime and provided full substrate coverage. Pt-decorated Co nanoparticles were then generated by applying a single potential pulse in a solution containing simultaneously Co and Pt ions. Segregation of Pt and Co deposits was observed in field emission gun (FEG) images, but the PtCo alloy was probably formed to some extent according to X-ray diffraction analysis. The PtCo-LbL hybrid exhibited superior catalytic activity toward H2O2 reduction compared to the Pt-modified LbL film, which opens new prospects for applications in biosensing and fuel cells.

2.
Phys Chem Chem Phys ; 15(41): 17887-92, 2013 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-24056840

RESUMEN

Hybrid materials with enhanced properties can now be obtained by combining nanomaterials such as carbon nanotubes and metallic nanoparticles, where the main challenge is to control fabrication conditions. In this study, we demonstrate that platinum nanoparticles (PtNps) can be electrogenerated within layer-by-layer (LbL) films of polyamidoamine (PAMAM) dendrimers and single-walled carbon nanotubes (SWCNTs), which serve as stabilizing matrices. The advantages of the possible control through electrogeneration were demonstrated with a homogeneous distribution of PtNps over the entire surface of the PAMAM/SWCNT LbL films, whose electroactive sites could be mapped using magnetic force microscopy. The Pt-containing films were used as catalysts for hydrogen peroxide reduction, with a decrease in the reduction potential of 60 mV compared to a Pt film deposited onto bare ITO. By analyzing the mechanisms responsible for hydrogen peroxide reduction, we ascribed the enhanced catalytic activity to synergistic effects between platinum and carbon in the LbL films, which are promising for sensing and fuel cell applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...