Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 13: 1101999, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36685500

RESUMEN

Introduction: Dendritic cells (DC) are crucial for initiating and shaping immune responses. So far, little is known about the functional specialization of human DC subsets in (local) inflammatory conditions. We profiled conventional (c)DC1, cDC2 and monocytes based on phenotype, transcriptome and function from a local inflammatory site, namely synovial fluid (SF) from patients suffering from a chronic inflammatory condition, Juvenile Idiopathic Arthritis (JIA) as well as patients with rheumatoid arthritis (RA). Methods: Paired PB and SF samples from 32 JIA and 4 RA patients were collected for mononuclear cell isolation. Flow cytometry was done for definition of antigen presenting cell (APC) subsets. Cell sorting was done on the FACSAria II or III. RNA sequencing was done on SF APC subsets. Proliferation assays were done on co-cultures after CD3 magnetic activated cell sorting (MACS). APC Toll-like receptor (TLR) stimulation was done using Pam3CSK4, Poly(I:C), LPS, CpG-A and R848. Cytokine production was measured by Luminex. Results: cDC1, a relatively small DC subset in blood, are strongly enriched in SF, and showed a quiescent immune signature without a clear inflammatory profile, low expression of pathogen recognition receptors (PRRs), chemokine and cytokine receptors, and poor induction of T cell proliferation and cytokine production, but selective production of IFNλ upon polyinosinic:polycytidylic acid exposure. In stark contrast, cDC2 and monocytes from the same environment, showed a pro-inflammatory transcriptional profile, high levels of (spontaneous) pro-inflammatory cytokine production, and strong induction of T cell proliferation and cytokine production, including IL-17. Although the cDC2 and monocytes showed an overlapping transcriptional core profile, there were clear differences in the transcriptional landscape and functional features, indicating that these cell types retain their lineage identity in chronic inflammatory conditions. Discussion: Our findings suggest that at the site of inflammation, there is specific functional programming of human DCs, especially cDC2. In contrast, the enriched cDC1 remain relatively quiescent and seemingly unchanged under inflammatory conditions, pointing to a potentially more regulatory role.


Asunto(s)
Artritis Juvenil , Artritis Reumatoide , Humanos , Líquido Sinovial , Células Dendríticas , Citocinas/metabolismo
2.
Brain Commun ; 3(4): fcab253, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34746789

RESUMEN

X-linked dystonia-parkinsonism (XDP) is a monogenic neurodegenerative disorder of the basal ganglia, which presents as a combination of hyperkinetic movements and parkinsonian features. The underlying genetic mechanism involves the insertion of a SINE-VNTR-Alu retrotransposon within the TAF1 gene. Interestingly, alterations of TAF1 have been involved in multiple neurological diseases. In XDP, the SINE-VNTR-Alu insertion in TAF1 has been proposed to result in alternative splicing defects, including the decreased incorporation of a neuron-specific microexon annotated as 34'. This mechanism has become controversial as recent studies failed to provide support. In order to resolve this conundrum, we examined the alternative splicing patterns of TAF1 mRNAs in XDP and control brains. The impact of the disease-associated SINE-VNTR-Alu on alternative splicing of microexon 34' was further investigated in cellular assays. Subsequently, microexon 34' incorporation was explored by RT-PCR and Nanopore long-read sequencing of TAF1 mRNAs from XDP and control brains tissues. Using cell-based splicing assays, we demonstrate that presence of the disease-associated SINE-VNTR-Alu does not affect the inclusion of microexon 34'. In addition, we show that (1) microexon 34'-containing TAF1 mRNAs are detected at similar levels in XDP as in controls and that (2) the architecture of TAF1 transcripts is remarkably similar between XDP and controls brains. These results indicate that microexon 34' incorporation into TAF1 mRNA is not affected in XDP brains. Our findings shift the current paradigm of XDP by discounting alternative splicing of TAF1 microexon 34' as the molecular basis for this disease.

3.
Cell Rep ; 31(12): 107799, 2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32579926

RESUMEN

Mutations in non-coding regulatory DNA such as enhancers underlie a wide variety of diseases including developmental disorders and cancer. As enhancers rapidly evolve, understanding their function and configuration in non-human disease models can have important clinical applications. Here, we analyze enhancer configurations in tissues isolated from the common marmoset, a widely used primate model for human disease. Integrating these data with human and mouse data, we find that enhancers containing trait-associated variants are preferentially conserved. In contrast, most human-specific enhancers are highly variable between individuals, with a subset failing to contact promoters. These are located further away from genes and more often reside in inactive B-compartments. Our data show that enhancers typically emerge as instable elements with minimal biological impact prior to their integration in a transcriptional program. Furthermore, our data provide insight into which trait variations in enhancers can be faithfully modeled using the common marmoset.


Asunto(s)
Enfermedad/genética , Elementos de Facilitación Genéticos , Evolución Molecular , Predisposición Genética a la Enfermedad , Animales , Callithrix/genética , Secuencia Conservada/genética , Humanos , Ratones , Anotación de Secuencia Molecular , Filogenia , Regiones Promotoras Genéticas , Carácter Cuantitativo Heredable
4.
Nat Commun ; 11(1): 301, 2020 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-31949148

RESUMEN

Speciation is associated with substantial rewiring of the regulatory circuitry underlying the expression of genes. Determining which changes are relevant and underlie the emergence of the human brain or its unique susceptibility to neural disease has been challenging. Here we annotate changes to gene regulatory elements (GREs) at cell type resolution in the brains of multiple primate species spanning most of primate evolution. We identify a unique set of regulatory elements that emerged in hominins prior to the separation of humans and chimpanzees. We demonstrate that these hominin gains perferentially affect oligodendrocyte function postnatally and are preferentially affected in the brains of autism patients. This preference is also observed for human-specific GREs suggesting this system is under continued selective pressure. Our data provide a roadmap of regulatory rewiring across primate evolution providing insight into the genomic changes that underlie the emergence of the brain and its susceptibility to neural disease.


Asunto(s)
Trastorno Autístico/metabolismo , Encéfalo/metabolismo , Hominidae/metabolismo , Oligodendroglía/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos/fisiología , Animales , Trastorno Autístico/genética , Callithrix , Cromatina , Inmunoprecipitación de Cromatina , Cromosomas/química , Susceptibilidad a Enfermedades , Evolución Molecular , Femenino , Regulación de la Expresión Génica , Genómica , Hominidae/genética , Humanos , Macaca mulatta , Pan troglodytes
5.
Nat Neurosci ; 19(3): 494-503, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26807951

RESUMEN

Although genome sequencing has identified numerous noncoding alterations between primate species, which of those are regulatory and potentially relevant to the evolution of the human brain is unclear. Here we annotated cis-regulatory elements (CREs) in the human, rhesus macaque and chimpanzee genomes using chromatin immunoprecipitation followed by sequencing (ChIP-seq) in different anatomical regions of the adult brain. We found high similarity in the genomic positioning of rhesus macaque and human CREs, suggesting that the majority of these elements were already present in a common ancestor 25 million years ago. Most of the observed regulatory changes between humans and rhesus macaques occurred before the ancestral separation of humans and chimpanzees, leaving a modest set of regulatory elements with predicted human specificity. Our data refine previous predictions and hypotheses on the consequences of genomic changes between primate species and allow the identification of regulatory alterations relevant to the evolution of the brain.


Asunto(s)
Encéfalo/metabolismo , Epigénesis Genética/genética , Epigenómica , Evolución Molecular , Macaca mulatta/genética , Pan troglodytes/genética , Elementos Reguladores de la Transcripción/genética , Animales , Inmunoprecipitación de Cromatina , Humanos
6.
Plant Cell ; 27(4): 1185-99, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25829440

RESUMEN

Plant cells cannot rearrange their positions; therefore, sharp tissue boundaries must be accurately programmed. Movement of the cell fate regulator SHORT-ROOT from the stele to the ground tissue has been associated with transferring positional information across tissue boundaries. The zinc finger BIRD protein JACKDAW has been shown to constrain SHORT-ROOT movement to a single layer, and other BIRD family proteins were postulated to counteract JACKDAW's role in restricting SHORT-ROOT action range. Here, we report that regulation of SHORT-ROOT movement requires additional BIRD proteins whose action is critical for the establishment and maintenance of the boundary between stele and ground tissue. We show that BIRD proteins act in concert and not in opposition. The exploitation of asymmetric redundancies allows the separation of two BIRD functions: constraining SHORT-ROOT spread through nuclear retention and transcriptional regulation of key downstream SHORT-ROOT targets, including SCARECROW and CYCLIND6. Our data indicate that BIRD proteins promote formative divisions and tissue specification in the Arabidopsis thaliana root meristem ground tissue by tethering and regulating transcriptional competence of SHORT-ROOT complexes. As a result, a tissue boundary is not "locked in" after initial patterning like in many animal systems, but possesses considerable developmental plasticity due to continuous reliance on mobile transcription factors.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Arabidopsis/metabolismo , Meristema/citología , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Meristema/metabolismo , Raíces de Plantas/citología , Raíces de Plantas/metabolismo
7.
J Biomol Screen ; 19(2): 287-96, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24334265

RESUMEN

Posttranslational modifications of histones play an important role in the regulation of gene expression and chromatin structure in eukaryotes. The balance between chromatin factors depositing (writers) and removing (erasers) histone marks regulates the steady-state levels of chromatin modifications. Here we describe a novel microscopy-based screening method to identify proteins that regulate histone modification levels in a high-throughput fashion. We named our method CROSS, for Chromatin Regulation Ontology SiRNA Screening. CROSS is based on an siRNA library targeting the expression of 529 proteins involved in chromatin regulation. As a proof of principle, we used CROSS to identify chromatin factors involved in histone H3 methylation on either lysine-4 or lysine-27. Furthermore, we show that CROSS can be used to identify chromatin factors that affect growth in cancer cell lines. Taken together, CROSS is a powerful method to identify the writers and erasers of novel and known chromatin marks and facilitates the identification of drugs targeting epigenetic modifications.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Histonas/genética , Microscopía , Proteínas/aislamiento & purificación , Línea Celular , Cromatina/genética , Epigénesis Genética , Histonas/metabolismo , Humanos , Lisina/genética , Metilación , Unión Proteica , Procesamiento Proteico-Postraduccional , Proteínas/genética
8.
Plant Physiol ; 162(3): 1618-31, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23669743

RESUMEN

Plant synthetic biology aims to apply engineering principles to plant genetic design. One strategic requirement of plant synthetic biology is the adoption of common standardized technologies that facilitate the construction of increasingly complex multigene structures at the DNA level while enabling the exchange of genetic building blocks among plant bioengineers. Here, we describe GoldenBraid 2.0 (GB2.0), a comprehensive technological framework that aims to foster the exchange of standard DNA parts for plant synthetic biology. GB2.0 relies on the use of type IIS restriction enzymes for DNA assembly and proposes a modular cloning schema with positional notation that resembles the grammar of natural languages. Apart from providing an optimized cloning strategy that generates fully exchangeable genetic elements for multigene engineering, the GB2.0 toolkit offers an evergrowing open collection of DNA parts, including a group of functionally tested, premade genetic modules to build frequently used modules like constitutive and inducible expression cassettes, endogenous gene silencing and protein-protein interaction tools, etc. Use of the GB2.0 framework is facilitated by a number of Web resources that include a publicly available database, tutorials, and a software package that provides in silico simulations and laboratory protocols for GB2.0 part domestication and multigene engineering. In short, GB2.0 provides a framework to exchange both information and physical DNA elements among bioengineers to help implement plant synthetic biology projects.


Asunto(s)
Ingeniería Genética/métodos , Plantas/genética , Programas Informáticos , Biología Sintética/métodos , Agrobacterium/genética , Arabidopsis/genética , Clonación Molecular/métodos , ADN/biosíntesis , Escherichia coli/genética , Regulación de la Expresión Génica , Silenciador del Gen , Internet , Plantas Modificadas Genéticamente , Plásmidos , Mapeo de Interacción de Proteínas/métodos , Nicotiana/genética , Interfaz Usuario-Computador
9.
Plant Mol Biol ; 81(6): 553-64, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23417583

RESUMEN

New evidence is emerging which indicates that population variants in plant virus infections are not uniformly distributed along the plant, but structured in a mosaic-like pattern due to limitation to the superinfection imposed by resident viral clones. The mechanisms that prevent the infection of a challenge virus into a previously infected cell, a phenomenon known as superinfection exclusion (SE) or Homologous Interference, are only partially understood. By taking advantage of a deconstructed tobacco mosaic virus (TMV) system, where the capsid protein (CP) gene is replaced by fluorescent proteins, an exclusion mechanism independent of CP was unveiled. Time-course superinfection experiments provided insights into SE dynamics. Initial infection levels affecting less than 10 % of cells led to full immunization in only 48 h, and measurable immunization levels were detected as early as 6 h post-primary infection. Depletion of a functional movement protein (MP) was also seen to slow down, but not to prevent, the SE mechanism. These observations suggest a CP-independent mechanism based on competition for a host-limiting factor, which operates at very low virus concentration. The possible involvement of host factors in SE has interesting implications as it would enable the host to influence the process.


Asunto(s)
Proteínas de la Cápside/metabolismo , Nicotiana/virología , Virus del Mosaico del Tabaco/patogenicidad , Interferencia Viral , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Proteínas de la Cápside/genética , Clonación Molecular , Genes Virales , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Células Vegetales , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/virología , Hojas de la Planta/genética , Hojas de la Planta/inmunología , Hojas de la Planta/virología , Transporte de Proteínas , Factores de Tiempo , Nicotiana/genética , Nicotiana/inmunología , Virus del Mosaico del Tabaco/genética , Virus del Mosaico del Tabaco/inmunología , Proteína Fluorescente Roja
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA