Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Vet Comp Oncol ; 20(4): 752-766, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35698822

RESUMEN

Distinct thermal therapies have been used for cancer therapy. For hyperthermia (HT) treatment the tumour tissue is heated to temperatures between 39 and 45°C, while during ablation (AB) temperatures above 50°C are achieved. HT is commonly used in combination with different treatment modalities, such as radiotherapy and chemotherapy, for better clinical outcomes. In contrast, AB is usually used as a single modality for direct tumour cell killing. Both thermal therapies have been shown to result in cytotoxicity as well as immune response stimulation. Immunogenic responses encompass the innate and adaptive immune systems and involve the activation of macrophages, dendritic cells, natural killer cells and T cells. Several heat technologies are used, but great interest arises from nanotechnology-based thermal therapies. Spontaneous tumours in dogs can be a model for cancer immunotherapies with several advantages. In addition, veterinary oncology represents a growing market with an important demand for new therapies. In this review, we will focus on nanoparticle-mediated thermal-induced immunogenic effects, the beneficial potential of integrating thermal nanomedicine with immunotherapies and the results of published works with thermotherapies for cancer using dogs with spontaneous tumours, highlighting the works that evaluated the effect on the immune system in order to show dogs with spontaneous cancer as a good model for evaluated the immunomodulatory effect of nanoparticle-mediated thermal therapies.


Asunto(s)
Enfermedades de los Perros , Hipertermia Inducida , Nanopartículas , Neoplasias , Perros , Animales , Terapia Combinada/veterinaria , Enfermedades de los Perros/radioterapia , Neoplasias/terapia , Neoplasias/veterinaria , Hipertermia Inducida/veterinaria , Hipertermia Inducida/métodos , Inmunidad , Nanopartículas/uso terapéutico
2.
Front Oncol ; 10: 560413, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33251133

RESUMEN

Ehrlich solid carcinoma (ESC) is one of the tumor models used in cancer research. Although it is widely used, it has no ultrasonographic descriptions. In this study, serial B-mode and Doppler ultrasonographic examinations were performed for 23 days for ESCs inoculated into 18 Swiss albino mice. The growth patterns were analyzed, and on the basis of their growth curve, the tumors were classified into two groups: fast growth (FG) and slow growth (SG). Ultrasonographic characteristics of the tumor's capsule, margins, echogenicity, echotexture, vascular index (VI), distribution of vascular flow, and Doppler indices such as the resistive index, pulsatility index, and peak systolic velocity (SV) were analyzed and compared between the two groups. A high VI and earlier blood flow were noted in the FG group (p<0.05). Additionally, SV was higher in the FG group than in the SG group (13.28 ± 0.38 cm/s vs. 8.43 ± 0.26 cm/s). In contrast, a change in echogenicity and flow distribution patterns were observed, especially in FG tumors. Therefore, ESC presented with few ultrasonographic differences between FG and SG tumors, especially vascularization during the initial stages of tumor growth.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...