Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38850157

RESUMEN

During early development, gene expression is tightly regulated. However, how genome organization controls gene expression during the transition from naïve embryonic stem cells to epiblast stem cells is still poorly understood. Using single-molecule microscopy approaches to reach nanoscale resolution, we show that genome remodeling affects gene transcription during pluripotency transition. Specifically, after exit from the naïve pluripotency state, chromatin becomes less compacted, and the OCT4 transcription factor has lower mobility and is more bound to its cognate sites. In epiblast cells, the active transcription hallmark, H3K9ac, decreases within the Oct4 locus, correlating with reduced accessibility of OCT4 and, in turn, with reduced expression of Oct4 nascent RNAs. Despite the high variability in the distances between active pluripotency genes, distances between Nodal and Oct4 decrease during epiblast specification. In particular, highly expressed Oct4 alleles are closer to nuclear speckles during all stages of the pluripotency transition, while only a distinct group of highly expressed Nodal alleles are in close proximity to Oct4 when associated with a nuclear speckle in epiblast cells. Overall, our results provide new insights into the role of the spatiotemporal genome remodeling during mouse pluripotency transition and its correlation with the expression of key pluripotency genes.

2.
Methods Mol Biol ; 2655: 171-181, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37212996

RESUMEN

Advanced microscopy techniques (such as STORM, STED, and SIM) have recently allowed the visualization of biological samples beyond the diffraction limit of light. Thanks to this breakthrough, the organization of molecules can be revealed within single cells as never before.Here, we describe the application of STochastic Optical Reconstruction Microscopy (STORM) for the study of polycomb group of proteins (PcG) in the context of chromatin organization. We present a clustering algorithm to quantitatively analyze the spatial distribution of nuclear molecules (e.g., EZH2 or its associated chromatin mark H3K27me3) imaged by 2D STORM. This distance-based analysis uses x-y coordinates of STORM localizations to group them into "clusters." Clusters are classified as singles if isolated or into islands if they form a group of closely associated clusters. For each cluster, the algorithm calculates the number of localizations, the area, and the distance to the closest cluster.This approach can be used for every type of adherent cell line and allows the imaging of every protein for which an antibody is available. It represents a comprehensive strategy to visualize and quantify how PcG proteins and related histone marks organize in the nucleus at nanometric resolution.


Asunto(s)
Cromatina , Microscopía , Cromatina/metabolismo , Proteínas del Grupo Polycomb , Núcleo Celular/metabolismo , Cromosomas
3.
Cells ; 11(15)2022 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-35954307

RESUMEN

The static magnetic fields (SMFs) impact on biological systems, induce a variety of biological responses, and have been applied to the clinical treatment of diseases. However, the underlying mechanisms remain largely unclear. In this report, by using human mesenchymal stem cells (MSCs) as a model, we investigated the biological effect of SMFs at a molecular and cellular level. We showed that SMF exposure promotes MSC proliferation and activates the expression of transcriptional factors such as FOS (Fos Proto-Oncogene, AP-1 Transcription Factor Subunit) and EGR1 (Early Growth Response 1). In addition, the expression of signal-transduction proteins p-ERK1/2 and p-JNK oscillate periodically with SMF exposure time. Furthermore, we found that the inhibition of the T-type calcium ion channels negates the biological effects of SMFs on MSCs. Together, we revealed that the SMFs regulate T-type calcium ion channels and mediate MSC proliferation via the MAPK signaling pathways.


Asunto(s)
Canales de Calcio Tipo T , Células Madre Mesenquimatosas , Canales de Calcio Tipo T/metabolismo , Proliferación Celular , Humanos , Sistema de Señalización de MAP Quinasas , Campos Magnéticos , Células Madre Mesenquimatosas/metabolismo
4.
Microb Cell Fact ; 21(1): 107, 2022 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-35655187

RESUMEN

BACKGROUND: Cordyceps militaris, a kind of edible and medicinal fungus widely accepted in East Asia, has attracted much attention as a potential cell factory for producing adenosine analogs. Despite the rapid development in gene editing techniques and genome modeling, the diversity of DNA elements in C. militaris was too short to achieve rational heterogeneous expression for metabolic engineering studies. RESULTS: In this study, PtrpC, a kind of promoter with a relatively appropriate expression level and small size, was selected as a monomer for promoter library construction. Through in vitro BioBricks assembly, 9 overlapping PtrpC promoters with different copy numbers as well as reporter gene gfp were connected and subsequently integrated into the genome of C. militaris. Both the mRNA transcription level and the expression level of gene gfp gradually increased along with the copy number of the overlapping promoter NPtrpC and peaked at 7. In the meantime, no significant difference was found in either the biomass or morphological characteristic of engineered and wild-type strains. CONCLUSIONS: This study firstly expanded the overlapping promoter strategy used in model microorganism in C. militaris. It was a proof-of-concept in fungi synthetic biology and provide a general method to pushed the boundary of promoter engineering in edible mushroom.


Asunto(s)
Cordyceps , Clonación Molecular , Cordyceps/genética , Biblioteca de Genes , Genes Reporteros , Regiones Promotoras Genéticas
5.
Nucleic Acids Res ; 50(1): 175-190, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-34929735

RESUMEN

Transcription and genome architecture are interdependent, but it is still unclear how nucleosomes in the chromatin fiber interact with nascent RNA, and which is the relative nuclear distribution of these RNAs and elongating RNA polymerase II (RNAP II). Using super-resolution (SR) microscopy, we visualized the nascent transcriptome, in both nucleoplasm and nucleolus, with nanoscale resolution. We found that nascent RNAs organize in structures we termed RNA nanodomains, whose characteristics are independent of the number of transcripts produced over time. Dual-color SR imaging of nascent RNAs, together with elongating RNAP II and H2B, shows the physical relation between nucleosome clutches, RNAP II, and RNA nanodomains. The distance between nucleosome clutches and RNA nanodomains is larger than the distance measured between elongating RNAP II and RNA nanodomains. Elongating RNAP II stands between nascent RNAs and the small, transcriptionally active, nucleosome clutches. Moreover, RNA factories are small and largely formed by few RNAP II. Finally, we describe a novel approach to quantify the transcriptional activity at an individual gene locus. By measuring local nascent RNA accumulation upon transcriptional activation at single alleles, we confirm the measurements made at the global nuclear level.


Asunto(s)
Nucleosomas/metabolismo , ARN Polimerasa II/metabolismo , ARN Mensajero/metabolismo , Células Cultivadas , Fibroblastos/metabolismo , Fibroblastos/ultraestructura , Humanos , Nucleosomas/ultraestructura , Transcriptoma
6.
STAR Protoc ; 2(4): 100865, 2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34632419

RESUMEN

Here, we describe three complementary microscopy-based approaches to quantify morphological changes of chromatin organization in cultured adherent cells: the analysis of the coefficient of variation of DNA, the measurement of DNA-free nuclear areas, and the quantification of chromatin-associated proteins at the nuclear edge. These approaches rely on confocal imaging and stochastic optical reconstruction microscopy and allow a fast and robust quantification of chromatin compaction. These approaches circumvent inter-variability between imaging conditions and apply to every type of adherent cells. For complete details on the use and execution of this protocol, please refer to Neguembor et al. (2021).


Asunto(s)
Cromatina/química , Procesamiento de Imagen Asistido por Computador/métodos , Microscopía Confocal/métodos , Técnicas de Cultivo de Célula , Núcleo Celular/química , Células Cultivadas , Células HeLa , Humanos
7.
Mol Cell ; 81(15): 3065-3081.e12, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34297911

RESUMEN

The chromatin fiber folds into loops, but the mechanisms controlling loop extrusion are still poorly understood. Using super-resolution microscopy, we visualize that loops in intact nuclei are formed by a scaffold of cohesin complexes from which the DNA protrudes. RNA polymerase II decorates the top of the loops and is physically segregated from cohesin. Augmented looping upon increased loading of cohesin on chromosomes causes disruption of Lamin at the nuclear rim and chromatin blending, a homogeneous distribution of chromatin within the nucleus. Altering supercoiling via either transcription or topoisomerase inhibition counteracts chromatin blending, increases chromatin condensation, disrupts loop formation, and leads to altered cohesin distribution and mobility on chromatin. Overall, negative supercoiling generated by transcription is an important regulator of loop formation in vivo.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Cromatina/química , Cromatina/genética , Proteínas Cromosómicas no Histona/metabolismo , Transcripción Genética/fisiología , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Línea Celular , Núcleo Celular/genética , Proteoglicanos Tipo Condroitín Sulfato/genética , Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/genética , ADN-Topoisomerasas de Tipo I/genética , ADN-Topoisomerasas de Tipo I/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Femenino , Humanos , Laminas/genética , Laminas/metabolismo , ARN Polimerasa II/metabolismo , Imagen Individual de Molécula/métodos , Cohesinas
8.
Nucleic Acids Res ; 47(16): 8470-8484, 2019 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-31287868

RESUMEN

Chromatin organization is crucial for regulating gene expression. Previously, we showed that nucleosomes form groups, termed clutches. Clutch size correlated with the pluripotency grade of mouse embryonic stem cells and human induced pluripotent stem cells. Recently, it was also shown that regions of the chromatin containing activating epigenetic marks were composed of small and dispersed chromatin nanodomains with lower DNA density compared to the larger silenced domains. Overall, these results suggest that clutch size may regulate DNA packing density and gene activity. To directly test this model, we carried out 3D, two-color super-resolution microscopy of histones and DNA with and without increased histone tail acetylation. Our results showed that lower percentage of DNA was associated with nucleosome clutches in hyperacetylated cells. We further showed that the radius and compaction level of clutch-associated DNA decreased in hyperacetylated cells, especially in regions containing several neighboring clutches. Importantly, this change was independent of clutch size but dependent on the acetylation state of the clutch. Our results directly link the epigenetic state of nucleosome clutches to their DNA packing density. Our results further provide in vivo support to previous in vitro models that showed a disruption of nucleosome-DNA interactions upon hyperacetylation.


Asunto(s)
ADN/química , Epigénesis Genética , Heterocromatina/metabolismo , Histonas/metabolismo , Nucleosomas/metabolismo , Procesamiento Proteico-Postraduccional , Acetilación , Ciclo Celular/genética , Línea Celular , ADN/genética , ADN/metabolismo , Fibroblastos/metabolismo , Fibroblastos/ultraestructura , Heterocromatina/ultraestructura , Histonas/genética , Humanos , Microscopía/métodos , Nucleosomas/ultraestructura
9.
Nat Commun ; 9(1): 1548, 2018 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-29670078

RESUMEN

TERRAs are long non-coding RNAs generated from the telomeres. Lack of TERRA knockout models has hampered understanding TERRAs' functions. We recently identified chromosome 20q as one of the main origins of human TERRAs, allowing us to generate the first 20q-TERRA knockout models and to demonstrate that TERRAs are essential for telomere length maintenance and protection. Here, we use ALT 20q-TERRA knockout cells to address a direct role of TERRAs in telomeric heterochromatin formation. We find that 20q-TERRAs are essential for the establishment of H3K9me3, H4K20me3, and H3K27me3 heterochromatin marks at telomeres. At the mechanistic level, we find that TERRAs bind to PRC2, responsible for catalyzing H3K27 tri-methylation, and that its localization to telomeres is TERRA-dependent. We further demonstrate that PRC2-dependent H3K27me3 at telomeres is required for the establishment of H3K9me3, H4K20me3, and HP1 binding at telomeres. Together, these findings demonstrate an important role for TERRAs in telomeric heterochromatin assembly.


Asunto(s)
Heterocromatina/química , Histonas/química , ARN Largo no Codificante/genética , Telómero/química , Animales , Biotina/química , Biotinilación , Sistemas CRISPR-Cas , Catálisis , Línea Celular Tumoral , Células HEK293 , Código de Histonas , Humanos , Hibridación Fluorescente in Situ , Metilación , Ratones , Ratones Noqueados , Complejo Represivo Polycomb 2/metabolismo , Proteínas del Grupo Polycomb/metabolismo , ARN Interferente Pequeño/metabolismo , Telómero/ultraestructura , Homeostasis del Telómero
10.
Cell Rep ; 12(10): 1594-605, 2015 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-26321631

RESUMEN

Conquering obesity has become a major socioeconomic challenge. Here, we show that reduced expression of the miR-25-93-106b cluster, or miR-93 alone, increases fat mass and, subsequently, insulin resistance. Mechanistically, we discovered an intricate interplay between enhanced adipocyte precursor turnover and increased adipogenesis. First, miR-93 controls Tbx3, thereby limiting self-renewal in early adipocyte precursors. Second, miR-93 inhibits the metabolic target Sirt7, which we identified as a major driver of in vivo adipogenesis via induction of differentiation and maturation of early adipocyte precursors. Using mouse parabiosis, obesity in mir-25-93-106b(-/-) mice could be rescued by restoring levels of circulating miRNA and subsequent inhibition of Tbx3 and Sirt7. Downregulation of miR-93 also occurred in obese ob/ob mice, and this phenocopy of mir-25-93-106b(-/-) was partially reversible with injection of miR-93 mimics. Our data establish miR-93 as a negative regulator of adipogenesis and a potential therapeutic option for obesity and the metabolic syndrome.


Asunto(s)
Adiposidad , MicroARNs/fisiología , Sirtuinas/genética , Proteínas de Dominio T Box/genética , Células 3T3-L1 , Adipocitos/fisiología , Adipogénesis , Tejido Adiposo/metabolismo , Tejido Adiposo/patología , Tejido Adiposo Blanco/metabolismo , Tejido Adiposo Blanco/patología , Animales , Autorrenovación de las Células , Femenino , Resistencia a la Insulina , Masculino , Síndrome Metabólico/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Obesos , Interferencia de ARN , Sirtuinas/metabolismo , Proteínas de Dominio T Box/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA